Nanoscale Silver

Project ID

1457

Category

Other

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Silver nanoparticles (AgNPs) are gaining attention from the academic and regulatory communities, not only because of their antimicrobial effects and subsequent product applications, but also because of their potential health and environmental risks. Whereas AgNPs in the aqueous phase are under intensive study, those in the atmosphere have been largely overlooked, although it is well established that inhalation of nanoparticles is associated with adverse health effects. This review summarizes the present state of knowledge concerning airborne AgNPs to shed light on the possible environmental exposure scenarios that may accompany the production and popularization of silver nanotechnology consumer products. The current understanding of the toxicity of AgNPs points toward a potential threat via the inhalation exposure route. Nanoparticle size, chemical composition, crystal structure, surface area, and the rate of silver ion release are expected to be important variables in determining toxicity. Possible routes of aerosolization of AgNPs from the production, use, and disposal of existing consumer products are presented. It is estimated that approximately 14% of silver nanotechnology products that have been inventoried could potentially release silver particles into the air during use, whether through spraying, dry powder dispersion, or other methods. In laboratory and industrial settings, six methods of aerosolization have been used to produce airborne AgNPs: spray atomization, liquid-flame spray, thermal evaporation-condensation, chemical vaporization, dry powder dispersion, and manual handling. Fundamental uncertainties remain about the fate of AgNPs in the environment, their short- and long-term health effects, and the specific physical and chemical properties of airborne particles that are responsible for health effects. Thus, to better understand the risks associated with silver nanotechnology, it is vital to understand the conditions under which AgNPs could become airborne.

Journal Article

Abstract  Manufacturers of clothing articles employ nanosilver (n-Ag) as an antimicrobial agent, but the environmental impacts of n-Ag release from commercial products are unknown. The quantity and form of the nanomaterials released from consumer products should be determined to assess the environmental risks of nanotechnology. This paper investigates silver released from commercial clothing (socks) into water, and its fate in wastewater treatment plants (WWTPs). Six types of socks contained up to a maximum of 1360 µg-Ag/g-sock and leached as much as 650 µg of silver in 500 mL of distilled water. Microscopy conducted on sock material and wash water revealed the presence of silver particles from 10 to 500 nm in diameter. Physical separation and ion selective electrode (ISE) analyses suggest that both colloidal and ionic silver leach from the socks. Variable leaching rates among sock types suggests that the sock manufacturing process may control the release of silver. The adsorption of the leached silver to WWTP biomass was used to develop a model which predicts that a typical wastewater treatment facility could treat a high concentration of influent silver. However, the high silver concentration may limit the disposal of the biosolids as agricultural fertilizer.

Journal Article

Abstract  It is inevitable that, during their use, engineered nanoparticles will be released into soils and waters. There is therefore increasing concern over the potential impacts of engineered nanoparticles in the environment on aquatic and terrestrial organisms and on human health. Once released into the environment, engineered nanoparticles will aggregate to some degree; they might also associate with suspended solids, sediment, be accumulated by organisms and enter drinking water sources and food materials. These fate processes are dependent on the characteristics of the particle and the characteristics of the environmental system. A range of ecotoxicological effects have also been reported, including effects on microbes, plants, invertebrates and fish. Although available data indicate that current risks of engineered nanoparticles in the environment to environmental and human health are probably low, our knowledge of the potential impacts of engineered nanoparticles in the environment on human health is still limited. There is therefore a need for continued work to develop an understanding of the exposure levels for engineered nanoparticles in environmental systems and to begin to explore the implications of these levels in terms of the ecosystem and human health. This will require research in a range of areas, including detection and characterization, environmental fate and transport, ecotoxicology and toxicology.

Journal Article

Abstract  To investigate the effect of pH on nanoparticle aggregation and transport in porous media, we quantified nanoparticle transport in two-dimensional structures. Titania was used as a model compound to explore the effects of surface potential on particle mobility in the subsurface. Results show that pH, and therefore, surface potential and aggregate size, dominate nanoparticle interactions with each other and surfaces. In each solution, nanoparticle aggregate size distributions were bimodal or trimodal, and aggregate sizes increased as the pH approached the pH of the point of zero charge (pHzpc). Over 80% of suspended particles and aggregates were mobile over the pH range of 1-12, except close to the pHzpc of the surfaces, where the particles are highly aggregated. The effect of pH on transport is not symmetric around the pHzpc of the particles due to charging of the channel surfaces. However, transport speed of nanoparticle aggregates did not vary with pH. The surface element integration technique, which takes into account the effect of curvature of particles on interaction energy, was used to evaluate the ability of theory to predict nanoparticle transport.

DOI
Journal Article

Abstract  The increasing use of manufactured nanoparticles ensures these materials will make their way into the environment. Silver nanoparticles in particular, due to use in a wide range of applications, have the potential to get into water systems, e.g., drinking water systems, ground water systems, estuaries, and/or lakes. One important question is what is the chemical and physical state of these nanoparticles in water? Are they present as isolated particles, agglomerates or dissolved ions, as this will dictate their fate and transport. Furthermore, does the chemical and physical state of the nanoparticles change as a function of size or differ from micron-sized particles of similar composition? In this study, an electrospray atomizer coupled to a scanning mobility particle sizer (ES-SMPS) is used to investigate the state of silver nanoparticles in water and aqueous nitric acid environments. Over the range of pH values investigated, 0.5–6.5, silver nanoparticles with a bimodal primary particle size distribution with the most intense peak at 5.0 ± 7.4 nm, as determined from transmission electron microscopy (TEM), show distinct size distributions indicating agglomeration between pH 6.5 and 3 and isolated nanoparticles at pH values from 2.5 to 1. At the lowest pH investigated, pH 0.5, there are no peaks detected by the SMPS, indicating complete nanoparticle dissolution. Further analysis of the solution shows dissolved Ag ions at a pH of 0.5. Interestingly, silver nanoparticle dissolution shows size dependent behavior as larger, micron-sized silver particles show no dissolution at this pH. Environmental implications of these results are discussed.

Journal Article

Abstract  The rapid development and potential release of engineered nanoparticles (ENPs) have raised considerable concerns due to the unique properties of nanomaterials. An important aspect of the risk assessment of ENPs is to understand the interactions of ENPs with plants, an essential base component of all ecosystems. The impact of ENPs on plant varies, depending on the composition, concentration, size and other important physical chemical properties of ENPs and plant species. Both enhancive and inhibitive effects of ENPs on plant growth at different developmental stages have been documented. ENPs could be potentially taken up by plant roots and transported to shoots through vascular systems depending upon the composition, shape, size of ENPs and plant anatomy. Despite the insights gained through many previous studies, many questions remain concerning the fate and behavior of ENPs in plant systems such as the role of surface area or surface activity of ENPs on phytotoxicity, the potential route of entrance to plant vascular tissues and the role of plant cell walls in internalization of ENPs. This article reviewed the current knowledge on the phytotoxicity and interactions of ENPs with plants at seedling and cellular levels and discussed the information gap and some immediate research needs to further our knowledge on this topic.

DOI
Journal Article

Abstract  An elementary step towards a quantitative assessment of the risks of new compounds or pollutants (chemicals, materials) to the environment is to estimate their environmental concentrations. Thus, the calculation of predicted environmental concentrations (PECs) builds the basis of a first exposure assessment. This paper presents a probabilistic method to compute distributions of PECs by means of a stochastic stationary substance/material flow modeling. The evolved model is basically applicable to any substance with a distinct lack of data concerning environmental fate, exposure, emission and transmission characteristics. The model input parameters and variables consider production, application quantities and fate of the compounds in natural and technical environments. To cope with uncertainties concerning the estimation of the model parameters (e.g. transfer and partitioning coefficients, emission factors) as well as uncertainties about the exposure causal mechanisms (e.g. level of compound production and application) themselves, we utilized and combined sensitivity and uncertainty analysis, Monte Carlo simulation and Markov Chain Monte Carlo modeling. The combination of these methods is appropriate to calculate realistic PECs when facing a lack of data. The proposed model is programmed and carried out with the computational tool R and implemented and validated with data for an exemplary case study of flows of the engineered nanoparticle nano-TiO2 in Switzerland.

Technical Report

Abstract  The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described here. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies.

Journal Article

Abstract  Experimental conditions that mimic likely scenarios of manufactured nanomaterials (MNs) introduction to aquatic systems were used to assessthe effect of nanoparticle dispersion/solubility and water chemical composition on MN-toxicity. Aqueous suspensions of fullerenes (C60), nanosilver (nAg), and nanocopper (nCu) were prepared in both deionized water and filtered (0.45 microm) natural river water samples collected from the Suwannee River basin, to emphasize differences in dissolved organic carbon (DOC) concentrations and solution ionic strengths (I). Two toxicity tests, the Ceriodaphnia dubia and MetPLATE bioassays were used. Results obtained from exposure studies show that water chemistry affects the suspension/solubility of MNs as well as the particle size distribution, resulting in a wide range of biological responses depending on the type of toxicity test used. Under experimental conditions used in this study, C60 exhibited no toxicity even when suspended concentrations exceeded 3 mg L(-1). MetPLATE results showed that the toxicity of aqueous suspensions of nCu tends to increase with increasing DOC concentrations, while increasing I reduces nCu toxicity. The use of the aquatic invertebrate C. dubia on the other hand showed a tendency for decreased mortality with increasing DOC and I. MetPLATE results for nAg showed decreasing trends in toxicity with increasing DOC concentrations and I. However, C. dubia exhibited contrasting biological responses, in that increasing DOC concentrations reduced toxicity, while the latter increased with increasing I. Overall, our results show that laboratory experiments that use DI-water and drastic MN-suspension methods may not be realistic as MN-dispersion and suspension in natural waters vary significantly with water chemistry and the reactivity of MNs.

Archival Material

Abstract  This Dredging Operations and Engineering Research (DOER) Technical Note (TN) is a tutorial with examples of the PTM, developed jointly by the Coastal Inlets Research Program (CIRP) and DOER Program. This note is applicable to Version 1.0 of PTM. Demirbilek et al. (2005a) describe the PTM interface, and an overview of features and capabilities of the PTM is presented in Demirbilek et al. (2005b). The theoretical formulation and implementation of the PTM are given in a technical report (MacDonald and Davies, in preparation). The PTM is a Lagrangian particle-tracking model that is part of the U.S. Army Corps of Engineers (USACE) Surface Water Modeling System, SMS (Zundel 2005, Zundel et al. 1998). It employs a Lagrangian method of tracking particle pathways to estimate migration of sediment particles as influenced by waves and currents. For its input, the PTM requires a geometric surface defining the bottom elevation (depth) over which water level, current velocity vectors, and waves are available at each point in the modeling domain. The user specifies sediment sources and model parameters to perform a PTM simulation within the SMS for a given set of hydrodynamic input (waves, water levels, and currents). The SMS includes commands for layout of the sediment sources, specification of the numerical parameters, and management of the Eulerian quantities (water depth, surface elevation, current velocity).

Journal Article

Abstract  #Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older biokinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

Journal Article

Abstract  The increasing use of engineered nanoparticles (NP) in industrial and household applications will very likely lead to the release of such materials into the environment. Assessing the risks of these NP in the environment requires an understanding of their mobility, reactivity, ecotoxicity and persistency. This review presents an overview of the classes of NP relevant to the environment and summarizes their formation, emission, occurrence and fate in the environment. The engineered NP are thereby compared to natural products such as soot and organic colloids. To date only few quantitative analytical techniques for measuring NP in natural systems are available, which results in a serious lack of information about their occurrence in the environment. Results from ecotoxicological studies show that certain NP have effects on organisms under environmental conditions, though mostly at elevated concentrations. The next step towards an assessment of the risks of NP in the environment should therefore be to estimate the exposure to the different NP. It is also important to notice that most NP in technical applications are functionalized and therefore studies using pristine NP may not be relevant for assessing the behavior of the NP actually used.

Journal Article

Abstract  Comprehensive understanding of the transport and deposition of engineered nanoparticles (NPs) in subsurface is required to assess their potential negative impact on the environment. We studied the deposition behavior of functionalized quantum dot (QD) NPs (CdTe) in different types of sands (Accusand, ultrapure quartz, and iron-coated sand) at various solution ionic strengths (IS). The observed transport behavior in ultrapure quartz and iron-coated sand was consistent with conventional colloid deposition theories. However, our results from the Accusand column showed that deposition was minimal at the lowest IS (1mM) and increased significantly as the IS increased. The effluent breakthrough occurred with a delay, followed by a rapid rise to the maximum normalized concentration of unity. Negligible deposition in the column packed with ultrapure quartz sand (100mM) and Accusand (1mM) rules out the effect of straining and suggests the importance of surface charge heterogeneity in QD deposition in Accusand at higher IS. Data analyses further show that only a small fraction of sand surface area contributed in QD deposition even at the highest IS (100mM) tested. The observed delay in breakthrough curves of QDs was attributed to the fast diffusive mass transfer rate of QDs from bulk solution to the sand surface and QD mass transfer on the solid phase. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analysis were used to examine the morphology and elemental composition of sand grains. It was observed that there were regions on the sand covered with layers of clay particles. EDX spectra collected from these regions revealed that Si and Al were the major elements suggesting that the clay particles were kaolinite. Additional batch experiments using gold NPs and SEM analysis were performed and it was observed that the gold NPs were only deposited on clay particles originally on the Accusand surface. After removing the clays from the sand surface, we observed negligible QD deposition even at 100mM IS. We proposed that nanoscale charge heterogeneities on clay particles on Accusand surface played a key role in QD deposition. It was shown that the value of solution IS determined the extent to which the local heterogeneities participated in particle deposition.

Journal Article

Abstract  The formation of silver nanoparticles (AgNPs) via reduction of silver ions (Ag(+)) in the presence of humic acids (HAs) under various environmentally relevant conditions is described. HAs tested originated from the Suwannee River (SUW), and included samples of three sedimentary HAs (SHAs), and five soils obtained across the state of Florida. The time required to form AgNPs varied depending upon the type and concentration of HA, as well as temperature. SUW and all three SHAs reduced Ag(+) at 22 °C. However, none of the soil HAs formed absorbance-detectable AgNPs at room temperature when allowed to react for a period of 25 days, at which time experiments were halted. The appearance of the characteristic surface plasmon resonance (SPR) of AgNPs was observed by ultraviolet-visible spectroscopy in as few as 2-4 days at 22 °C for SHAs and SUW. An elevated temperature of 90 °C resulted in the accelerated appearance of the SPR within 90 min for SUW and all SHAs. The formation of AgNPs at 90 °C was usually complete within 3 h. Transmission electron microscopy and atomic force microscopy images showed that the AgNPs formed were typically spherical and had a broad size distribution. Dynamic light scattering also revealed polydisperse particle size distributions. HAs appeared to colloidally stabilize AgNPs based on lack of any significant change in the spectral characteristics over a period of two months. The results suggest the potential for direct formation of AgNPs under environmental conditions from Ag(+) sources, implying that not all AgNPs observed in natural waters today may be of anthropogenic origin.

Journal Article

Abstract  The aim of this study was to use a life-cycle perspective to model the quantities of engineered nanoparticles released into the environment. Three types of nanoparticles were studied: nano silver (nano-Ag), nano TiO2 (nano-TiO2), and carbon nanotubes (CNT). The quantification was based on a substance flow analysis from products to air, soil, and water in Switzerland. The following parameters were used as model inputs: estimated worldwide production volume, allocation of the production volume to product categories, particle release from products, and flow coefficients within the environmental compartments. The predicted environmental concentrations (PEC) were then compared to the predicted no effect concentrations (PNEC) derived from the literature to estimate a possible risk. The expected concentrations of the three nanoparticles in the different environmental compartments vary widely, caused by the different life cycles of the nanoparticle-containing products. The PEC values for nano-TiO2 in water are 0.7 16 µg/L and close to or higher than the PNEC value for nano-TiO2 (<1 µg/L). The risk quotients (PEC/PNEC) for CNT and nano-Ag were much smaller than one, therefore comprising no reason to expect adverse effects from those particles. The results of this study make it possible for the first time to carry out a quantitative risk assessment of nanoparticles in the environment and suggest further detailed studies of nano-TiO2.

Journal Article

Abstract  With the increased presence of nanomaterials in commercial products, a growing public debate is emerging on whether the environmental and social costs of nanotechnology outweigh its many benefits. To date, few studies have investigated the toxicological and environmental effects of direct and indirect exposure to nanomaterials and no clear guidelines exist to quantify these effects.

Journal Article

Abstract  The terms agglomerate and aggregate are widely used by powder technologists to describe assemblages of particles that are found in dry powders and powders in liquid suspensions. Each term has a specific meaning but, unfortunately, they are frequently interchanged at will and this has resulted in universal confusion. This confusion is perpetuated by conflicting definitions in national and international standards and this presents problems when describing powder properties or communicating results in reports and research papers. This paper reviews the current status of the definitions, with particular emphasis on their use in the pharmaceutical industry. It is proposed that just one term, agglomerate, should be used to describe an assemblage of particles in a powder and that the term aggregate should be confined to pre-nucleation structures. © 2002 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 91:2103-2109, 2002

Journal Article

Abstract  Products with antimicrobial effect based on silver nanoparticles are increasingly used in Asia, North America and Europe. This study presents an analysis of risk to freshwater ecosystems from silver released from these nanoparticles incorporated into textiles and plastics. The analysis is presented in four stages; (i) silver mass flow analysis and estimation of emissions, (ii) assessment of the fate of silver in a river system and estimation of predicted environmental concentrations (PECS), (iii) critical evaluation of available toxicity data for environmentally relevant forms of silver and estimation of predicted no-effect concentrations (PNECs), and (iv) risk characterization. Our assessment is based on estimated silver use in the year 2010, focusing on the Rhine river as a case study. In 2010, biocidal plastics and textiles are predicted to account for up to 15% of the total silver released into water in the European Union. The majority of silver released into wastewater is incorporated into sewage sludge and may be spread on agricultural fields. The amount of silver reaching natural waters depends on the fraction of wastewater that is effectively treated. Modeled PECS in the Rhine river are in satisfactory agreement with monitoring data from other river systems. Because a complete characterization of the toxicity of environmentally relevant silver species is lacking, only a limited risk assessment is possible at this time. However, our study indicates that PEC/PNEC ratios greater than 1 cannot be ruled out for freshwater ecosystems, in particular sediments. No risk is predicted for microbial communities in sewage treatment plants. (c) 2007 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Nanosilver has been used broadly in nanotechnology enhanced consumer products because of its strong antimicrobial properties. Silver nanoparticles (AgNPs) released from these products will likely enter wastewater collection and treatment systems. This research evaluated the role of sulfide and ligand strength in controlling nanosilver toxicity to nitrifying bacteria that are important in wastewater treatment. The nanosilver toxicity in the absence and presence of ligands (SO42-, S2-, Cl-, PO43-, and EDTA-) commonly present in wastewater was determined from the oxygen uptake rate measurements. Sulfide appeared to be the only ligand to effectively reduce nanosilver toxicity. By adding a small aliquot of sulfide that was stoichiometrically complexed with AgNPs, the nanosilver toxicity to nitrifying organisms was reduced by up to 80%. Scanning electron microscopy coupled with energy dispersive X-ray analysis indicated that AgNPs were highly reactive with sulfide to form new AgxSy complexes or precipitates. These complexes were not oxidized after a prolonged period of aeration (18 h). This information is useful for wastewater treatment design and operation to reduce nanosilver toxicity via sulfide complexation. While the biotic ligand model was successful in predicting the toxicity of Ag+ ions, it could not accurately predict the toxicity of AgNPs. Nevertheless, it could be one of the many tools useful in predicting and controlling nanosilver toxicity to wastewater microorganisms.

Journal Article

Abstract  The early stage aggregation kinetics of fullerene C60 nanoparticles were investigated in the presence of Suwannee River humic acid and common monovalent and divalent electrolytes through time-resolved dynamic light scattering (DLS). In the absence of humic acid, the aggregation behavior of the fullerene nanoparticles in the presence of NaCl, MgCl2, and CaCl2 was found to be consistent with the classic Derjaguin–Landau–Verwey–Overbeek (DLVO) theory of colloidal stability. In the presence of humic acid and NaCl or MgCl2 electrolytes, the adsorbed humic acid on the fullerene nanoparticles led to steric repulsion, which effectively stabilized the nanoparticle suspension. This behavior manifested in a dramatic drop in the rate of aggregation, an increase in the critical coagulation concentration (CCC), and an attained value of less than unity for the inverse stability ratio (or attachment efficiency) at high MgCl2 concentrations. While the increase in the nanoparticle stability was similarly observed in the presence of humic acid at low CaCl2 concentrations, enhanced aggregation occurred at higher CaCl2 concentrations. Measurement of scattered light intensities over time indicated significant aggregation of the humic acid macromolecules in solutions of high CaCl2 concentrations. Transmission electron microscopy (TEM) imaging of the fullerene aggregate structures in the presence of humic acid revealed that bridging of the fullerene nanoparticles and aggregates by the humic acid aggregates is the likely mechanism for the enhanced aggregation at high CaCl2 concentrations.

Book/Book Chapter

Abstract  Proceedings of Argentum International Conference, Madison, WI, August 1999

Journal Article

Abstract  Sorption to activated sludge is a major removal mechanism for pollutants, including manufactured nanoparticles (NPs), in conventional activated sludge wastewater treatment plants. The objectives of this work were to (1) image sorption of fluorescent NPs to wastewater biomass; (2) quantify and compare biosorption of different types of NPs exposed to wastewater biomass; (3) quantify the effects of natural organic matter (NOM), extracellular polymeric substances (EPS), surfactants, and salt on NP biosorption; and (4) explore how different surface functionalities for fullerenes affect biosorption. Batch sorption isotherm experiments were conducted with activated sludge as sorbent and a total of eight types of NPs as sorbates. Epifluorescence images clearly show the biosorption of fluorescent silica NPs; the greater the concentration of NPs exposed to biomass, the greater the quantity of NPs that biosorb. Furthermore, biosorption removes different types of NPs from water to different extents. Upon exposure to 400 mg/L total suspended solids (TSS) of wastewater biomass, 97% of silver nanoparticles were removed, probably in part by aggregation and sedimentation, whereas biosorption was predominantly responsible for the removal of 88% of aqueous fullerenes, 39% of functionalized silver NPs, 23% of nanoscale titanium dioxide, and 13% of fullerol NPs. Of the NP types investigated, only aq-nC(60) showed a change in the degree of removal when the NP suspension was equilibrated with NOM or when EPS was extracted from the biomass. Further study of carbonaceous NPs showed that different surface functionalities affect biosorption. Thus, the production and transformations in NP surface properties will be key factors in determining their fate in the environment.

Journal Article

Abstract  Engineered nanomaterials (ENM) are already used in many products and consequently released into environmental compartments. In this study, we calculated predicted environmental concentrations (PEC) based on a probabilistic material flow analysis from a life-cycle perspective of ENM-containing products. We modeled nano-TiO(2), nano-ZnO, nano-Ag, carbon nanotubes (CNT), and fullerenes for the U.S., Europe and Switzerland. The environmental concentrations were calculated as probabilistic density functions and were compared to data from ecotoxicological studies. The simulated modes (most frequent values) range from 0.003 ng L(-1) (fullerenes) to 21 ng L(-1) (nano-TiO(2)) for surface waters and from 4 ng L(-1) (fullerenes) to 4 microg L(-1) (nano-TiO(2)) for sewage treatment effluents. For Europe and the U.S., the annual increase of ENMs on sludge-treated soil ranges from 1 ng kg(-1) for fullerenes to 89 microg kg(-1) for nano-TiO(2). The results of this study indicate that risks to aquatic organisms may currently emanate from nano-Ag, nano-TiO(2), and nano-ZnO in sewage treatment effluents for all considered regions and for nano-Ag in surface waters. For the other environmental compartments for which ecotoxicological data were available, no risks to organisms are presently expected.

Filter Results