Nanoscale Silver

Project ID

1457

Category

Other

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  This study aims at investigating feasibility and challenges associated with conducting a human health risk assessment for nano-silver based on the open literature by following an approach similar to a classical regulatory risk assessment. Gaps in the available data set, both in relation to exposures and hazard, do not allow reaching any definite conclusions that could be used for regulatory decision making. Results show that repeated inhalation in the workplace and possibly consumer inhalation may cause risks. Also (uncontrolled) nano-silver drug intake and burn treatment of large parts of the body with wound dressings may cause risks. Main future work should focus on generating occupational and consumer exposure data, as well as toxicity data on absorption (are particles or only ions absorbed?), information on genetoxicity, and further information on the toxicity following inhalation exposure to sizes and agglomeration states as uncounted in the workplace.

Journal Article

Abstract  In assessing hazard for human health posed by newly engineered nanomaterials (ENM), approaches such as Weight of Evidence (WOE) and expert judgment are required to develop conclusions about the hazard of ENM. This is because all factors affecting hazard are not currently well defined and are often subject to different interpretation. Here we report the application of a WOE procedure to assess the potential of ENM to cause harm for human health, by integrating and combining physicochemical properties of NM and toxicity data obtained within the EU-funded Particle Risk project. The procedure was applied to carbon black (CB), single-walled carbon nanotubes (SWNT), C60 fullerene and quantum dots (QD) ENM tested during the Particle Risk project. The results show that some of the investigated ENM present a relatively higher hazardousness level on the basis of the integration of their physicochemical properties and toxicological effects, and that their hazard may be ranked as follow: QD >> C60 > SWNT > CB. This case study shows the utility of WOE approach to obtain a hazard ranking of ENM.

Journal Article

Abstract  The terms agglomerate and aggregate are widely used by powder technologists to describe assemblages of particles that are found in dry powders and powders in liquid suspensions. Each term has a specific meaning but, unfortunately, they are frequently interchanged at will and this has resulted in universal confusion. This confusion is perpetuated by conflicting definitions in national and international standards and this presents problems when describing powder properties or communicating results in reports and research papers. This paper reviews the current status of the definitions, with particular emphasis on their use in the pharmaceutical industry. It is proposed that just one term, agglomerate, should be used to describe an assemblage of particles in a powder and that the term aggregate should be confined to pre-nucleation structures. © 2002 Wiley-Liss Inc. and the American Pharmaceutical Association J Pharm Sci 91:2103-2109, 2002

Journal Article

Abstract  Nanoparticles are small-scale substances (<100 nm) with unique properties and, thus, complex exposure and health risk implications. This symposium review summarizes recent findings in exposure and toxicity of nanoparticles and their application for assessing human health risks. Characterization of airborne particles indicates that exposures will depend on particle behavior (e.g., disperse or aggregate) and that accurate, portable, and cost-effective measurement techniques are essential for understanding exposure. Under many conditions, dermal penetration of nanoparticles may be limited for consumer products such as sunscreens, although additional studies are needed on potential photooxidation products, experimental methods, and the effect of skin condition on penetration. Carbon nanotubes apparently have greater pulmonary toxicity (inflammation, granuloma) in mice than fine-scale carbon graphite, and their metal content may affect toxicity. Studies on TiO2 and quartz illustrate the complex relationship between toxicity and particle characteristics, including surface coatings, which make generalizations (e.g., smaller particles are always more toxic) incorrect for some substances. These recent toxicity and exposure data, combined with therapeutic and other related literature, are beginning to shape risk assessments that will be used to regulate the use of nanomaterials in consumer products.

Technical Report

Abstract  National Primary Drinking Water Regulations (NPDWRs or primary standards) are legally enforceable standards that apply to public water systems. Primary standards protect public health by limiting the levels of contaminants in drinking water. Visit the list of regulated contaminants with links for more details.

Journal Article

Abstract  With the increasing utilization of engineered nanomaterials (ENM), the potential exposure of workers to ENM is likely to increase significantly. Very little is known though, of the risks posed by ENM to human health, in particular concerning those characteristics that are technologically attractive: small size, high surface to mass ratio, and surface reactivity. ENM risk assessment is hampered by a lack of exposure as well as toxicity data specific to the multitude of ENM being developed. An economical approach to this problem urgently calls for intelligent testing strategies to capture essential features of ENM, thereby allowing over-arching ENM risk assessment. The data gaps of ENM risk assessment include (1) ENM aerosol standards and agreement on ENM key metrics; (2) dependable exposure scenarios, affordable monitoring technologies, exposure data and models; and (3) biomedical data on ENM translocation and toxicity, and associated testing strategies (which must be linked to the exposure scenarios). The special features of ENM do not, however, create a need to amend the current overall approach to the risk assessment of chemicals.

Technical Report

Abstract  This report describes how the National Center for Environmental Assessment (NCEA) designed and carried out the “Nanomaterial Case Studies Workshop: Developing a Comprehensive Environmental Assessment Research Strategy for Nanoscale Titanium Dioxide” in September 2009. Two case studies focusing on different uses of nanoscale titanium dioxide (nano-TiO2), for water treatment and for topical sunscreen, were developed around a framework known as comprehensive environmental assessment (CEA), which is a holistic approach to risk assessment that encompasses the product life cycle, fate and transport, exposure-dose, and both ecological and human health effects. The case studies were presented in a draft document to selected reviewers in advance of a workshop in which they served as participants in a structured process (Nominal Group Technique [NGT]) to identify and prioritize information or research needed to support a CEA of nano-TiO2. The results of the ranking process are presented, followed by some brief observations about the process and a discussion of next steps.

Journal Article

Abstract  Production volumes and the use of engineered nanomaterials in many innovative products are continuously increasing, however little is known about their potential risk for the environment and human health. We have reviewed publicly available hazard and exposure data for both, the environment and human health and attempted to carry out a basic risk assessment appraisal for four types of nanomaterials: fullerenes, carbon nanotubes, metals, and metal oxides (ENRHES project 2009(1)). This paper presents a summary of the results of the basic environmental and human health risk assessments of these case studies, highlighting the cross cutting issues and conclusions about fate and behaviour, exposure, hazard and methodological considerations. The risk assessment methodology being the basis for our case studies was that of a regulatory risk assessment under REACH (ECHA, 2008(2)), with modifications to adapt to the limited available data. If possible, environmental no-effect concentrations and human no-effect levels were established from relevant studies by applying assessment factors in line with the REACH guidance and compared to available exposure data to discuss possible risks. When the data did not allow a quantitative assessment, the risk was assessed qualitatively, e.g. for the environment by evaluating the information in the literature to describe the potential to enter the environment and to reach the potential ecological targets. Results indicate that the main risk for the environment is expected from metals and metal oxides, especially for algae and Daphnia, due to exposure to both, particles and ions. The main risks for human health may arise from chronic occupational inhalation exposure, especially during the activities of high particle release and uncontrolled exposure. The information on consumer and environmental exposure of humans is too scarce to attempt a quantitative risk characterisation. It is recognised that the currently available database for both, hazard and exposure is limited and there are high uncertainties in any conclusion on a possible risk. The results should therefore not be used for any regulatory decision making. Likewise, it is recognised that the REACH guidance was developed without considering the specific behaviour and the mode of action of nanomaterials and further work in the generation of data but also in the development of methodologies is required.

DOI
Book/Book Chapter

Abstract  The release of nanomaterials and, in particular, free nanoparticles into the environment from secondary sources such as industrial manufacturing and consumer products as well as from intentional environmental application has compelled a need for a broad and pre-emptive analysis of nanomaterial fate and transport in the environment and subsequent potential human exposure pathways. The novel and potentially reactive characteristics of nanomaterials have lead to predictions on potential undesirable ramifications of exposure to these materials on human health. The three-level risk assessment strategy presented in this work has its basis in qualitative model equations that represent the inter-relationships between the different material and process characteristics and environmental behaviors and their relationship to potential exposure scenarios. The factors that influence these behaviors are examined, and the potential application of this risk assessment strategy in a semi-quantitative model is considered.

Technical Report

Abstract  Outlines the NNI strategy for nanotechnology-related environmental, health and safety (EHS) research. Includes an analysis of EHS research needs outlined in the previously published NNI document, Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials (September 2006) and a summary of the then-current NNI EHS research portfolio across five primary research categories: (1) Instrumentation, Metrology, and Analytical Methods; (2) Nanomaterials and Human Health; (3) Nanomaterials and the Environment; (4) Human and Environmental Exposure Assessment; and (5) Risk Management Methods. Also includes an analysis of the strengths, weaknesses, and gaps in the then-current NNI research portfolio, a recommended framework for addressing the identified research needs, and a recommended implementation and adaptive management process. Tables showing research projects funded in 2006 by NNI agencies in each of the five EHS research categories are included as an appendix.

Technical Report

Abstract  This document is a starting point to determine what is known and what needs to be known about selected nanomaterials as part of a process to identify and prioritize research to inform future assessments of the potential ecological and health implications of these materials. Two specific applications of nanoscale titanium dioxide (nano-TiO2) are considered: (1) as an agent for removing arsenic from drinking water; and (2) as an active ingredient in topical sunscreen. These case studies are organized around a comprehensive environmental assessment (CEA) framework that combines a product life cycle perspective with the risk assessment paradigm. They are intended to help identify what may need to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2.

Journal Article

Abstract  A cradle-to-grave life cycle assessment (LCA) is performed to compare nanosilver T-shirts with conventional T-shirts with and without biocidal treatment. For nanosilver production and textile incorporation, we investigate two processes: flame spray pyrolysis (FSP) and plasma polymerization with silver co-sputtering (PlaSpu). Prospective environmental impacts due to increased nanosilver T-shirt commercialization are estimated with six scenarios. Results show significant differences in environmental burdens between nanoparticle production technologies: The "cradle-to-gate" climate footprint of the production of a nanosilver T-shirt is 2.70 kg of CO(2)-equiv (FSP) and 7.67-166 kg of CO(2)-equiv (PlaSpu, varying maturity stages). Production of conventional T-shirts with and without the biocide triclosan has emissions of 2.55 kg of CO(2)-equiv (contribution from triclosan insignificant). Consumer behavior considerably affects the environmental impacts during the use phase. Lower washing frequencies can compensate for the increased climate footprint of FSP nanosilver T-shirt production. The toxic releases from washing and disposal in the life cycle of T-shirts appear to be of minor relevance. By contrast, the production phase may be rather significant due to toxic silver emissions at the mining site if high silver quantities are required.

Filter Results