n-Butanol

Project ID

1542

Category

IRIS

Added on

Dec. 14, 2010, 3:50 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Tert-Butanol is an important intermediate in industrial chemical synthesis, particularly of fuel oxygenates. Human exposure to tert-butanol may occur following fuel oxygenate metabolism or biodegradation. It is poorly absorbed through skin, but is rapidly absorbed upon inhalation or ingestion and distributed to tissues throughout the body. Elimination from blood is slower and the half-life increases with dose. It is largely metabolised by oxidation via 2-methyl-1,2-propanediol to 2-hydroxyisobutyrate, the dominant urinary metabolites. Conjugations also occur and acetone may be found in urine at high doses. The single-dose systemic toxicity of tert-butanol is low, but it is irritant to skin and eyes; high oral doses produce ataxia and hypoactivity and repeated exposure can induce dependence. Tert-Butanol is not definable as a genotoxin and has no effects specific for reproduction or development; developmental delay occurred only with marked maternal toxicity. Target organs for toxicity clearly identified are kidney in male rats and urinary bladder, particularly in males, of both rats and mice. Increased tumour incidences observed were renal tubule cell adenomas in male rats and thyroid follicular cell adenomas in female mice and, non-significantly, at an intermediate dose in male mice. The renal adenomas were associated with α2u-globulin nephropathy and, to a lesser extent, exacerbation of chronic progressive nephropathy. Neither of these modes of action can function in humans. The thyroid tumour response could be strain-specific. No thyroid toxicity was observed and a study of hepatic gene expression and enzyme induction and thyroid hormone status has suggested a possible mode of action.

Journal Article

Abstract  Cyclotrimethylenetrinitramine (RDX) has been used extensively as an explosive. Prior to this study no data were available on the metabolism of RDX in animals. Metabolism of 14C-RDX was studied in male and female miniature pigs after a one-time gavage with 41 to 44 mg/kg, (0.8 to 0.9 mCi/animal) in an aqueous suspension of 0.1% carboxymethyl cellulose. Metabolic profiles and identification of 14C-RDX-derived radioactivity in plasma, liver and urine were performed utilizing HPLC radio-scanning and LC/MS/MS analysis. Analytical standards were available for all proposed metabolites. Two HPLC columns with differing elution profiles were used for separation, quantification and tentative identification. Identifications were confirmed using LC/MS/MS. Two metabolites were isolated and identified as 4-nitro-2, 4-diazabutanal and a novel metabolite, 4-nitro- 2-4 diaza-butanamide. Analysis also revealed trace levels of 1-nitroso-3,5-dinitro-1,3,5-triazacyclohexane (MNX), 1,3-dintroso-5-nitro-1,3,5-triazacyclohexane (DNX) and 1,3,5-trinitroso- 1,3,5-triazacyclohexane (TNX) in plasma and showed trace levels of MNX and DNX in urine. No metabolites were detected in the liver samples. Thus RDX was metabolized primarily by a method that accomplished both denitration and oxidative cleavage of the ring structure of this compound to form butanal and butanamide metabolites.

Journal Article

Abstract  Clinical reports on monozygotic and dizygotic twins provided the initial evidence for the involvement of genetic factors in risk vulnerability for fetal alcohol spectrum disorders (FASD) including fetal alcohol syndrome (FAS). Research with selectively bred and inbred rodents, genetic crosses of these lines and strains, and embryo culture studies have further clarified the role of both maternal and fetal genetics in the development of FASD. Research to identify specific polymorphisms contributing to FASD is still at an early stage. To date, polymorphisms of only one of the genes for the alcohol dehydrogenase enzyme family, the ADH1B, have been demonstrated to contribute to FASD vulnerability. In comparison with ADH1B*1, both maternal and fetal ADH1B*2 have been shown to reduce risk for FAS in a mixed ancestry South African population. ADH1B*3 appears to afford protection for FASD outcomes in African-American populations. Other candidate genes should be examined with respect to FASD risk, including those for the enzymes of serotonin metabolism, in particular the serotonin transporter. By its very nature, alcohol teratogenesis is the expression of the interaction of genes with environment. The study of genetic factors in FASD falls within the new field of ecogenetics. Understanding of the array of genetic factors in FASD will be enhanced by future genetic investigations, including case-control, family association, and linkage studies.

DOI
Journal Article

Abstract  More than one hundred volatile organic substances were identified by gas chromatography and mass spectrometry (GC/MS) in the indoor and outdoor air, stable and farm road dust and farm soil samples from two pig and cattle farms in the South Moravian Region. Volatile fatty acids (acetic, propanoic, butanoic and pentanoic acids) and their esters dominated along with aldehydes (butanal, pentanal and hexanal) and 4-methylphenol in the indoor and outdoor air samples. Road dust and soil samples contained mainly volatile aromatic compounds (toluene, benzene, ethylbenzene, styrene and xylenes), aliphatic hydrocarbons (largely n-alkanes), dichloromethane and carbon disulphide. The health risks associated with particular volatile compounds detected in the indoor and outdoor samples from the farms need to be assessed.

Journal Article

Abstract  The gut microflora in some patients with Crohn's disease can be reduced in numbers of butyrate-producing bacteria and this could result in metabolic stress in the colonocytes. Thus, we hypothesized that the short-chain fatty acid, butyrate, is important in the maintenance and regulation of the barrier function of the colonic epithelium.

Confluent monolayers of the human colon-derived T84 or HT-29 epithelial cell lines were exposed to dinitrophenol (DNP (0.1 mM), uncouples oxidative phosphorylation) + Escherichia coli (strain HB101, 10(6) cfu) +/- butyrate (3-50 mM). Transepithelial resistance (TER), and bacterial internalization and translocation were assessed over a 24-hour period. Epithelial ultrastructure was assessed by transmission electron microscopy.

Epithelia under metabolic stress display decreased TER and increased numbers of pseudopodia that is consistent with increased internalization and translocation of the E. coli. Butyrate (but not acetate) significantly reduced the bacterial translocation across DNP-treated epithelia but did not ameliorate the drop in TER in the DNP+E. coli exposed monolayers. Inhibition of bacterial transcytosis across metabolically stressed epithelia was associated with reduced I-kappaB phosphorylation and hence NF-kappaB activation.

Reduced butyrate-producing bacteria could result in increased epithelial permeability particularly in the context of concomitant exposure to another stimulus that reduces mitochondria function. We speculate that prebiotics, the substrate for butyrate synthesis, is a valuable prophylaxis in the regulation of epithelial permeability and could be of benefit in preventing relapses in IBD.

Journal Article

Abstract  This paper presents formaldehyde and volatile organic compounds (VOC) concentrations, potential sources and impact factors in 100 homes. The 24-h average formaldehyde concentration in 37 homes exceeded the good class of the Hong Kong Indoor Air Quality Objectives (HKIAQO), whereas the total VOCs concentration in all homes was lower than the HKIAQO. Compared to other East Asian cities, indoor formaldehyde and styrene in Hong Kong was the highest, reflecting that the homes in Hong Kong were more affected by household products and materials. The formaldehyde concentration in newly built apartments was significantly higher than that in old buildings, whereas no relationship between the concentration and the building age was found for VOCs. There was no difference for formaldehyde and toluene between smoking and non-smoking homes, suggesting that cigarette smoking was not the major source of these two species. Homes of a couple with a child had higher formaldehyde and acetic acid concentrations, while homes with more than three people had higher concentrations of 1-butanol, heptane and d-limonene. When shoes were inside the homes, heptane, acetic acid, nonane and styrene concentrations were statistically higher than that when shoes were out of the homes. Furthermore, higher levels of 1,2,4-trimethylbenzene, styrene, nonane and heptane were found in gas-use families rather than in electricity-use homes. PRACTICAL IMPLICATIONS: Long-term exposure to formaldehyde and volatile organic compounds (VOC) in indoor environments may cause a number of adverse health effects such as asthma, dizziness, respiratory and lung diseases, and even cancers. Therefore, it is critical to minimize indoor air pollution caused by formaldehyde and VOCs. The findings obtained in this study would significantly enhance our understanding on the levels, emission sources and factors which affect indoor concentrations of formaldehyde and VOCs. The results can help housing designers, builders, home residents, and housing department of the government to improve indoor air quality (IAQ) by means of appropriate building materials, clean household products and proper life styles. It can also help policy makers reconcile the IAQ objectives and guidelines.

Journal Article

Abstract  This experimental study deals with the colloidal stability of sterically functionalized magnetite nanoparticles in a low dielectric constant organic solvent with different concentrations of technical grade polymers. Those dispersions are the starting point of a solution and spray drying process chain to synthesize highly filled nanocomposite materials with nanoparticle volume concentrations exceeding 10%. We introduce a thermo gravimetric method together with light extinction and dynamic light scattering measurements to gain quantitative information on the concentration of primary particles and the mechanism of destabilization or stabilization by polymer addition. Poly(vinyl butyral) is found to stabilize the dispersion considerably caused by stronger interactions with the fatty acid coated magnetite particles quantified by means of adsorption measurements. Both poly(methyl methacrylate) as well as two grades of poly(bisphenol A carbonate) are found to destabilize the dispersion due to depletion flocculation over the entire concentration range investigated However there is a significant quantity of a stable fraction of primary nanoparticles in the supernatant after depletion flocculation occurred. This fraction of primary particles is increasing with decreasing polymer concentration. We furthermore point out important concerns and limitations for the composition of and concentrations in such complex colloidal systems for use in industrially relevant processes.

Journal Article

Abstract  Titanate sol-gel layers imprinted with carbonic acids were used as sensitive layers on quartz crystal microbalance. These functionalized ceramics enable us detection of volatile organic compounds such as ethanol, n-propanol, n-butanol, n-hexane, n-heptane, n-/iso-octane, and n-decane. Variation of the precursors (i.e., tetrabutoxy titanium, tetrapropoxy titanium, tetraethoxy titanium) allows us to tune the sensitivity of the material by a factor of 7. Sensitivity as a function of precursors leads to selective inclusion of n-butanol vapors down to 1 ppm. The selectivity of materials is optimized to differentiate between isomers, e.g., n- and iso-octane. The results can be rationalized by correlating the sensor effects of hydrocarbons with the Wiener index. A mass-sensitive sensor based on titanate layer was also developed for monitoring emanation of degraded engine oil. Heating the sensor by a meander avoids vapor condensation. Thus, a continuously working oil quality sensor was designed.

Journal Article

Abstract  Tertiary butyl alcohol (TBA) was administered to groups of 15 female B6C3F1 mice in drinking water at concentrations of 0, 2.0 or 20 mg TBA ml(-1), for 14 days, for assessment of gross and histological changes in the liver and thyroid, thyroid hormones (T3, T4, and TSH), total hepatic cytochrome P450 (Cyp) content, specific Cyp activities and quantitative PCR analysis of specific Cyp enzymes (Cyp1a1, Cyp2b9, Cyp2b10, Cyp3a11), sulfuryltransferases (ST1a1, ST2a2, and STn) and glucuronyltransferases (UGT1a1, UGT2b1, and UGT2b5). Phenobarbital (PB) was administered to a positive control group by oral gavage at a daily dose of 80 mg kg(-1). TBA caused, on day 14, a reduction in circulating T3 (12-15% decrease) and a dose-dependent reduction in T4 (13-22% decrease), with no evidence of thyroid pathology. Two of five livers examined in the 20 mg TBA ml(-1) dose group showed mild, diffuse centrilobular hypertrophy. On day 14, Cyp 7-benzoxyresorufin-O-debenzylase activity was significantly induced 12-fold by TBA at 20 mg ml(-1), and 1.8-fold at the 2.0 mg TBA ml(-1) concentration. Cyp 7-pentoxyresorufin-O-dealkylase activity was slightly induced (2.1-fold) by 20 mg TBA ml(-1) on day 14. Quantitative PCR analysis of gene transcripts showed a significant induction of Cyp2b10 and ST1a1 with both TBA concentrations, and a slight induction of Cyp2b9 at 20 mg TBA ml(-1) only. PB induced all phase I and phase II gene transcripts except for Cyp1a1 and Cyp2b9. These findings suggest that TBA, at and below doses used in chronic studies, is an inducer of phase I and phase II liver enzymes, with resulting decreases in circulating thyroid hormones in B6C3F1 mice.

Journal Article

Abstract  Occupational exposure to butter flavoring vapors (BFV) is associated with significant pulmonary injury. The goal of the current study was to characterize inhalation dosimetric patterns of diacetyl and butyric acid, two components of BFV, and to develop a hybrid computational fluid dynamic-physiologically based pharmacokinetic model (CFD-PBPK) to describe these patterns. Uptake of diacetyl and butyric acid vapors, alone and in combination, was measured in the upper respiratory tract of anesthetized male Sprague-Dawley rats under constant velocity flow conditions and the uptake data were used to validate the CFD-PBPK model. Diacetyl vapor (100 or 300 ppm) was scrubbed from the airstream with 76-36% efficiency at flows of 100-400 ml/min. Butryic acid (30 ppm) was scrubbed with >90% efficiency. Concurrent exposure to butyric acid resulted in a small but significant reduction of diacetyl uptake (36 vs. 31%, p < 0.05). Diacetyl was metabolized in nasal tissues in vitro, likely by diacetyl reductase, an enzyme known to be inhibited by butyric acid. The CFD-PBPK model closely described diacetyl uptake; the reduction in diacetyl uptake by butyric acid could be explained by inhibition of diacetyl reductase. Extrapolation to the human via the model suggested that inspired diacetyl may penetrate to the intrapulmonary airways to a greater degree in the human than in the rat. Thus, based on dosimetric relationships, extrapulmonary airway injury in the rat may be predictive of intrapulmonary airway injury in humans. Butyric acid may modulate diacetyl toxicity by inhibiting its metabolism and/or altering its inhalation dosimetric patterns.

Journal Article

Abstract  The purpose of this study was to assess the utility of the thermoregulatory system as an end point in predicting the toxicity of various short-chain alcohols. Male Fischer rats developed significant hypothermia following acute administration (ip) of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, or 2-butanol. The hypothermic responses to the six alcohols all showed similar segmented responses characterized by a threshold dose below which no change in body temperature occurred, and a suprathreshold regression with increasing dose causing greater hypothermia. Relative potency of the alcohols was assessed using both the threshold dose to cause hypothermia and the dose that would cause body temperature to decrease by 1 degree C. Both measures gave the progression of toxicity from least to most potent of methanol less than ethanol less than 2-propanol less than 1-propanol less than 2-butanol less than 1-butanol. The effective dose of each alcohol was compared to its membrane/buffer partition coefficient (Pm/b), and there was a high inverse correlation between the hypothermic dose of an alcohol and its lipid solubility. That the potency of an alcohol was strongly correlated with its Pm/b suggests that the membrane disordering theory of narcosis may also be used to explain the hypothermic action of alcohols.

Journal Article

Abstract  For four decades, the Draize test has remained the accepted method for evaluating eye irritation. Criticisms center around the inhumane treatment of animals and the irreproducibility of the subjective scoring procedure. The objective of this study was to determine if changes in corneal thickness obtained using a slit-lamp pachometer could be used to replace the Draize scoring procedure and provide a method for quantifying ocular irritation. Twenty-four chemicals (six surfactants, seven alcohols, four ketones, four acetates, and three aromatics) were instilled in the conjunctival sacs of rabbits and irritation monitored by Draize scoring and changes in corneal thickness. The Draize procedure was more adept at detecting minor conjunctival damage, but corneal thickness exhibited less variation and increased sensitivity for detection of healing reactions. A significant linear correlation (y = l.736x + 92.883) was established between Draize score and corneal thickness changes with a correlation coefficient (r) of 0.86 and an F-value for regression of 261.3. Using these findings, an ocular irritation ranking system is proposed based upon the percentage of corneal swelling. Ocular irritation potential was ranked for the chemical groups tested (surfactants> alcohols> ketones or acetates> aromatics). Quantitation of ocular irritation from changes in corneal thickness provides objective, numerical data applicable to standard parametric statistical procedures. This should eliminate the subjective bias inherent to Draize scoring and decrease intra- and interlaboratory variability. ® 1989 Society orToxicology.

Journal Article

Abstract  Vulnerable periods during the development of the nervous system are sensitive to environmental insults because they are dependent on the temporal and regional emergence of critical developmental processes (i.e., proliferation, migration, differentiation, synaptogenesis, myelination, and apoptosis). Evidence from numerous sources demonstrates that neural development extends from the embryonic period through adolescence. In general, the sequence of events is comparable among species, although the time scales are considerably different. Developmental exposure of animals or humans to numerous agents (e.g., X-ray irradiation, methylazoxymethanol, ethanol, lead, methyl mercury, or chlorpyrifos) demonstrates that interference with one or more of these developmental processes can lead to developmental neurotoxicity. Different behavioral domains (e.g., sensory, motor, and various cognitive functions) are subserved by different brain areas. Although there are important differences between the rodent and human brain, analogous structures can be identified. Moreover, the ontogeny of specific behaviors can be used to draw inferences regarding the maturation of specific brain structures or neural circuits in rodents and primates, including humans. Furthermore, various clinical disorders in humans (e.g., schizophrenia, dyslexia, epilepsy, and autism) may also be the result of interference with normal ontogeny of developmental processes in the nervous system. Of critical concern is the possibility that developmental exposure to neurotoxicants may result in an acceleration of age-related decline in function. This concern is compounded by the fact that developmental neurotoxicity that results in small effects can have a profound societal impact when amortized across the entire population and across the life span of humans.

Journal Article

Abstract  1. Human alcohol dehydrogenase (ADH) has been investigated by spectrophotometry assay and by starch-gel electrophoresis. 2. Assays were carried out at pH 8-8 and pH 11-0 on liver samples obtained post mortem from 129 adults over the age of 20, 37 premature infants and infants less than one year old and 56 foetuses. Sixteen cases of the previously described atypical pH ratio phenotype were identified among the 166 adults and infants tested. No examples of the atypical pH ratio phenotype were encountered among the foetuses. On average the foetal liver ADH activity was less than in adults and it appeared to increase with increasing gestational age. 3. Electrophoretic analyses of ADH in liver samples obtained from 117 foetuses of various gestational ages, 62 premature infants and infants less than a year old and a group of more than 200 adults over the age of 20, indicate that developmental changes occur during intrauterine life. 4. The atypical pH ratio phenotype liver ADH isozyme pattern was found to be electro-phoretically different from that of the usual pH ratio phenotype. 5. The ADH isozyme pattern in lung tissue was the same in adults, infants and foetuses. The overall activity was low and mainly concentrated in a single isozyme which was electrophoretic-ally indistinguishable from the main ADH isozyme of adult liver. Usual and atypical pH ratio phenotypes were identified, both by assay and by starch-gel electrophoresis, in foetal, infant and adult lung specimens. 6. The ADH activity of kidney and intestine was too weak for assay with ethanol as substrate. In adults the isozyme patterns in kidney were similar to those found in adult liver. In foetal intestine and kidney, however, the ADH isozymes were quite different from those of adult liver and also foetal liver. Three distinct phenotypes, designated ADH3 1, ADH3 2-1 and ADH3 2, were recognized in foetal kidney and intestine, occurring with frequencies of 0–42, 0–42, and 0–16 respectively in a survey of 117 specimens. 7. The appearance of the ADH isozyme patterns in liver and in foetal kidney and intestine is consistent with the hypothesis that ADH has a dimeric sub unit structure. 8. The findings suggest that at least three autosomal gene loci may be concerned in determining the structure of alcohol dehydrogenase in man. (a) Locus ADH1primarily active in the liver in early foetal life, becoming less active during gestation and only weakly active during adult life. (b) Locus ADH2 (i) expressed in lung in early foetal life and remaining active in this tissue throughout life, (ii) active in liver after about the first trimester and gradually becoming more active so that in adults this locus is responsible for most of the liver ADH activity, (iii) also active in adult kidney, (iv) the atypical pH ratio phenotype is probably determined by a variant allele at the ADH2 locus. (c) Locus ADH3- active during foetal and early post-natal life in intestine and kidney. The variant phenotypes ADH3 1, ADH3 2-1 and ADH3 2 are thought to represent the genotypes ADH13ADH31,ADH32ADH32 and ADE31ADH32 respectively, where ADH31 and ADH32 are alleles at the ADH3 locus. The gene-frequency estimate of ADH31 is 0.63 and of ADH32 is 0.37.

Journal Article

Abstract  This work proposed a gas sensor for the determination of tert-butyl mercaptan, one of the highly toxic volatile sulfur compounds, which was based on cataluminescence emission during its catalytic oxidation on the surface of nanosized V(2)O(5). The cataluminescence characteristics and the optimum conditions, including the morphology of sensing material, the wavelength of cataluminescence emission, the oxygen flow rate and working temperature were investigated in detail. Under the optimized conditions, the calibration curve of the relative cataluminescence intensity versus the concentration of tert-butyl mercaptan vapor was made, with the linear range of 5.6-196 microg mL(-1) and the detection limit of 0.5 microg mL(-1) (S/N=3). The relative standard deviation (R.S.D.) (n=5) of relative cataluminescence intensity for 84 microg mL(-1) tert-butyl mercaptan was 3.6%. There is no or weak response to some common substances, such as formic acid, alcohol (methanol, ethanol, propanol, isopropanol, n-butanol, isoamyl alcohol), o-dichlorobenzene, acetonitrile, ethyl acetate, aldehyde (formaldehyde, acetaldehyde and propanal), 1,2-dichloroethane and ammonia. Furthermore, the proposed sensor was successfully used for determining tert-butyl mercaptan in four artificial samples, with a good recovery. The results demonstrated that the proposed gas sensor had a promising capability for the tert-butyl mercaptan in routine monitoring.

Journal Article

Abstract  Abstract: In this paper, we evaluate the efficiency of UV/H2O2 process to remove methyl tert-butyl ether (MtBE) and tertiary butyl alcohol (tBA) from a drinking water source. Kinetic models were used to evaluate the removal efficiency of the UV/H2O2 technologies with different pretreatment options and light sources. Two commercial UV light sources, i.e. low pressure, high intensity lamps and medium pressure, high intensity lamps, were evaluated. The following pretreatment alternatives were evaluated: (1) ion exchange softening with seawater regeneration (NaIX); (2) Pellet Softening; (3) weak acid ion exchange (WAIX); and (4) high pH lime softening followed by reverse osmosis (RO). The presence or absence of a dealkalization step prior to the UV/H2O2 Advanced Oxidation Process (AOP) was also evaluated for each pretreatment possibility. Pretreatment has a significant impact on the performance of UV/H2O2 process. The NaIX with dealkalization was shown to be the most cost effective. The electrical energy per order (EEO) values for MtBE and tBA using low pressure high output UV lamps (LPUV) and 10mg/LH2O2 are 0.77 and 3.0kWh/kgal-order, or 0.20 and 0.79kWh/m3-order, respectively. For medium pressure UV high output lamps (MPUV), EEO values for MtBE and tBA are 4.6 and 15kWh/kgal-order, or 1.2 and 4.0kWh/m3-order, for the same H2O2 dosage. [Copyright 2008 Elsevier] Copyright of Water Research is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts)

Book/Book Chapter

Abstract  In experiments with the atomization of n-butyl acetate in chambers with rats, the LC50 was as low as 156 ppm.(4) However, workplace exposures occur almost universally to n-butyl acetate vapor, and direct exposure to atomized n-butyl acetate exposure did not occur in occupational situations.^ Accordingly, the marked toxicity of the atomized n-butyl acetate observed in animal bioassays is not of practical concern in the workplace. A TLV-TWA of 150 ppm is recommended for n-butyl acetate to minimize the potential risk of eye and mucous membrane irritation reported in volunteers exposed at 200 to 300 ppm of n-butyl acetate for 3 to 20 minutes.(35,37) A TLV-STEL of 200 ppm is recommended to control the excursions that produced mucous membrane irritation in the volunteers at exposures of 200 to 300 ppm for 3 to 20 minutes.(35,37) Given the high vapor pressure of this compound and the fact that topical application of n-butyl acetate in rabbits(27) and guinea pigs(20) failed to elicit systemic toxicity, the skin notation is not warranted Sufficient data were not available to recommend SEN or carcinogenicity notations. The reader is expected to be familiar with the section on Excursion Limits in the "Introduction to the Chemical Substance TLVs" of the current edition of the Documentation of the TLVs and BEIs for the guidance and control of excursions above the TLV-TWA, even when the 8-hour TWA is within the recommended limit.

DOI
Journal Article

Abstract  Enantioenriched poly(hydroxy butyrate) (PHB) is a biodegradable polyester of significant commercial interest as an environmentally benign substitute of commodity polyolefines. We report on the design and development of new chiral indole-based ligand families and on their chromium(III) complexes as enantioselective catalysts for the conversion of propylene oxide and carbon monoxide to enantioenriched [beta]-butyrolactone, the key monomer for the production of PHB by ring-opening polymerization. The enantioselective carbonylation catalysts are based on new chiral tri- and tetradentate [N2O] and [N4] chromium(III) complexes containing chiral indolaldimine ligand scaffolds. The conceptual design of these ligands is inspired by Jacobsen's salicylaldimine lead structure; the key difference is an exchange of the salicyl-O-donor against an indole-N-donor, allowing additional structural diversity and stereoelectronic tuning by the indole substitution pattern. Synthetically, chiral indolealdimines are easily accessible from 7-formylindoles by standard Schiff base condensation with chiral amine building blocks; the 7-formylindoles in turn are synthesized from the corresponding 7-bromoindoles by the Rapoport synthesis, and the starting 7-bromoindoles are accessible from 2-bromoaniline by the classical Fischer indole synthesis. Three generations of chiral [N2O] and [N4] chromium(III) catalysts have been developed and evaluated in the enantioselective carbonylation of racemic propylene oxide with carbon monoxide using tetracarbonylcobaltate as the nucleophilic reagent for the insertion of carbon monoxide into the activated propylene oxide/chiral Lewis acid complex. The best catalyst out of 10 candidates showed at a temperature of 80 °C an activity of 37% conversion, 100% chemoselectivity, and 19% stereoselectivity.

Journal Article

Abstract  Ornithine carbamyl transferase (OCT), an enzyme found predominantly in the liver, is released into the bloodstream when liver cells are ruptured. The measurement of serum OCT activity is a convenient, specific, and sensitive assay of liver damage. This test was used to evaluate the effect of several widely used solvents on the livers of guinea pigs. Each solvent was administered intraperitoneally, and 24 hours later serum OCT activity was measured. Many of the solvents tested failed to increase serum OCT activity even at near-lethal doses. Of the thirty-three solvents evaluated, two produced elevations in serum OCT activity at relatively low doses (less than 50 mg/kg), five at moderate doses (50 to 500 mg/kg), and nine at high doses (greater than 500 mg/kg).

Journal Article

Abstract  Monoclinic monazite-type EuPO4 and LaPO4:Eu nanorods were synthesized by a microemulsion-assisted solvothermal method. Their morphologies, structures, and fluorescent properties were characterized by SEM, XRD, and photoluminescence (PL) modern analytic means, respectively. The aspect ratios of EuPO4 and LaPO4:Eu nanorods have a decreasing tendency with increasing carbon chain length of assisted surfactants. When the assisted surfactant was n-butyl alcohol, the EuPO4 exhibited nanorod morphology with diameters from 20 to 30 nm and lengths from 100 to 150 nm. When the assisted surfactant was n-pentanol, the EuPO4 nanorods had lengths between 200 and 300 nm and a diameter range similar to that of the n-butyl alcohol nanorods. When the assisted surfactant was n-hexanol and n-octyl alcohol, only elliptical EuPO4 products were obtained. The LaPO4:Eu nanorods synthesized in the presence of different assisted-surfactants exhibited elliptical morphologies with diameters of 40-60 nm and lengths of 70-110 nm. The LaPO4:Eu and EuPO4 nanorods showed a orange prominent emission peak from magnetic-dipole transition 5D0 --> F1 (593 nm) of Eu3+ ions whose sites in the EuPO4 and LaPO4:Eu nanorods have C1 symmetry. Compared with bulk LaPO4:Eu, the fine structure of the Eu-O charge transfer band has very small red shift resulting from the slight increase of the length of Eu-O bond due to nanoscale size effect.

Technical Report

Abstract  This report presents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives and contaminants, with a view to recommending acceptable daily intakes for humans, and to prepare specifications for the identity and purity of food additives. The first part of the report contains a general discussion of the principles governing the toxicological evaluation of food additives and contaminants, including flavouring agents, and the establishment and revision of specifications, with comments concerning limits for arsenic, lead and other heavy metals, and enzymes derived from genetically manipulated organisms. A summary follows of the Committee's evaluations of toxicological data on various specific food additives (tert-butylhydroquinone (TBHQ), microcrystalline cellulose, sucrose esters of fatty acids and sucroglycerides, alpha-acetolactate decarboxylase, maltogenic amylase, trans-anethole, hydrogenated poly-1-decene and maltitol syrup), food ingredients (short- and long-chain acyltriglycerides), flavouring agents and the contaminants aflatoxins. Annexed to the report are tables summarizing the Committee's recommendations for acceptable daily intakes of the food additives and food ingredients considered, changes in the status of specifications for these substances and specific flavouring agents, and further toxicological studies required.

  • <<
  • 2 of 239
  • >>
Filter Results