n-Butanol

Project ID

1542

Category

IRIS

Added on

Dec. 14, 2010, 3:50 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Faecal microbial changes associated with ageing include reduced bifidobacteria numbers. These changes coincide with an increased risk of disease development. Prebiotics have been observed to increase bifidobacteria numbers within humans. The present study aimed to determine if prebiotic galacto-oligosaccharides (GOS) could benefit a population of men and women of 50 years and above, through modulation of faecal microbiota, fermentation characteristics and faecal water genotoxicity. A total of thirty-seven volunteers completed this randomised, double-blind, placebo-controlled crossover trial. The treatments - juice containing 4 g GOS and placebo - were consumed twice daily for 3 weeks, preceded by 3-week washout periods. To study the effect of GOS on different large bowel regions, three-stage continuous culture systems were conducted in parallel using faecal inocula from three volunteers. Faecal samples were microbially enumerated by quantitative PCR. In vivo, following GOS intervention, bifidobacteria were significantly more compared to post-placebo (P = 0·02). Accordingly, GOS supplementation had a bifidogenic effect in all in vitro system vessels. Furthermore, in vessel 1 (similar to the proximal colon), GOS fermentation led to more lactobacilli and increased butyrate. No changes in faecal water genotoxicity were observed. To conclude, GOS supplementation significantly increased bifidobacteria numbers in vivo and in vitro. Increased butyrate production and elevated bifidobacteria numbers may constitute beneficial modulation of the gut microbiota in a maturing population.

Journal Article

Abstract  Microorganisms, such as Pseudomonas putida, utilize specific physical properties of cellular membrane constituents, mainly glycerophospholipids, to (re-)adjust the membrane barrier to environmental stresses. Building a basis for membrane composition/function studies, we inventoried the glycerophospholipids of different Pseudomonas and challenged membranes of growing cells with n-butanol. Using a new high-resolution liquid chromatography/mass spectrometry (LC/MS) method, 127 glycerophospholipid species [e.g. phosphatidylethanolamine PE(32:1)] with up to five fatty acid combinations were detected. The glycerophospholipid inventory consists of 305 distinct glycerophospholipids [e.g. PE(16:0/16:1)], thereof 14 lyso-glycerophospholipids, revealing conserved compositions within the four investigated pseudomonads P. putida KT2440, DOT-T1E, S12 and Pseudomonas sp. strain VLB120. Furthermore, we addressed the influence of environmental conditions on the glycerophospholipid composition of Pseudomonas via long-time exposure to the sublethal n-butanol concentration of 1% (v/v), focusing on: (i) relative amounts of glycerophospholipid species, (ii) glycerophospholipid head group composition, (iii) fatty acid chain length, (iv) degree of saturation and (v) cis/trans isomerization of unsaturated fatty acids. Observed alterations consist of changing head group compositions and for the solvent-sensitive strain KT2440 diminished fatty acid saturation degrees. Minor changes in the glycerophospholipid composition of the solvent-tolerant strains P. putida S12 and Pseudomonas sp. VLB120 suggest different strategies of the investigated Pseudomonas to maintain the barrier function of cellular membranes.

Journal Article

Abstract  Dermatopontin (DPT), a component of the extracellular matrix (ECM), is involved in promotion of cellular adhesion and ECM assembly activities. However, the role of DPT in the pathogenesis of carcinoma is unclear. We evaluated DPT expression in human oral cancer and its possible roles including cellular adhesion and invasiveness. We first investigated the DPT mRNA and protein expression status in human oral squamous cell carcinoma (OSCC)-derived cells. Real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and immunoblotting analysis detected frequent downregulation of DPT in OSCC-derived cells compared to human normal oral keratinocytes. To assess the epigenetic regulation of DPT, OSCC-derived cells were treated with a histone deacetylase inhibitor, sodium butyrate (NaB). NaB restored the DPT expression in OSCC-derived cells. DPT-overexpressed cells were examined whether DPT could contribute to cellular adhesion and invasiveness. Markedly, increased adhesion and decreased invasiveness in DPT-overexpressed cells were found compared to mock-transfected cells. Adhesion of DPT-overexpressed cells was inhibited by α3β1 integrin functional blocking antibody. OSCC-derived cells treated with NaB also decreased invasiveness. The expression status of DPT in primary OSCCs (n = 97) was analyzed and compared to clinicopathological behavior. DPT expression in primary OSCCs was significantly lower (p < 0.05) than in the normal counterparts and was correlated significantly (p < 0.05) with regional lymph node metastasis. Our data provided strong evidence that downregulation of DPT is a characteristic event in OSCCs and that DPT was correlated with cellular adhesion and invasiveness. Therefore, DPT might play an important role in regulating tumor invasion and metastasis.

DOI
Journal Article

Abstract  Panax ginseng C.A. Mayer (Araliaceae, R ginseng) has been used for the enhancement of vascular and immune functions in Korea and Japan for a long time. Ginsenoside Rb-1 and Rg(3) isolated from P ginseng head-part butanolic extract (PGHB) were investigated for anti-inflammatory activity. Ginsenosides and PGHB did not affect the cell viability within 0 - 100 mu g/ml concentration to RAW 264.7 murine macrophage cells. Ginsenosides and PGHB inhibited partly lipopolysaccharide (LPS)-induced nitrite production in a dose-dependent manner. The ginsenosides and PGHB showed partially chemical nitric oxide (NO) quenching (maximum 40%) in the cell-free system. Also, ginsenoside Rb, and Rg(3) inhibited markedly approximately 74 and 54% of inducible nitric oxide synthase (iNOS) mRNA transcription from LPS-induced RAW 264.7 cells. Taken together, the inhibitory effect of ginsenosides and PGHB on NO production did not occur as a result of cell viability, but was caused by both the chemical NO quenching and the regulation of iNOS. Additionally, the ginsenoside Rb, and PGHB inhibited prostaglandin E-2 (PGE (2)) synthesis in a concentration-dependent manner, showed approximately 70-98% inhibition at 100 mu g/ml concentration. And the treatment with ginsenosides and PGHB attenuated partially LPS- upregulated cyclooxygenase-2 (COX-2) gene transcription. Ginsenoside Rg(3) suppressed LIPS- stimulated intedeukin-6 (IL-6) level to the basal in RAW 264.7 cells. From these results, ginsenoside Rb-1, Rg(3), and PGHB may be useful for the relief and retardation of immunological inflammatory responses and its action may occur through the reduction of inflammatory mediators, including NO, PGE2, and IL-6 production.

Journal Article

Abstract  Chicory roots are rich in inulin that is degraded into SCFA in the caecum and colon. Whole-body SCFA metabolism was investigated in rats during food deprivation and postprandial states. After 22 h of food deprivation, sixteen rats received an IV injection of radioactive 14C-labelled SCFA. The volume of distribution and the fractional clearance rate of SCFA were 0.25-0.27 litres/kg and 5.4-5.9 %/min, respectively. The half-life in the first extracellular rapidly decaying compartment was between 0.9 and 1.4 min. After 22 h of food deprivation, another seventeen rats received a primed continuous IV infusion of 13C-labelled SCFA for 2 h. Isotope enrichment (13C) of SCFA was determined in peripheral arterial blood by MS. Peripheral acetate, propionate and butyrate turnover rates were 29, 4 and 0.3 micromol/kg per min respectively. Following 4 weeks of treatment with chicory root or control diets, eighteen fed rats received a primed continuous IV infusion of 13C-labelled SCFA for 2 h. Intestinal degradation of dietary chicory lowered caecal pH, enhanced caecal and colonic weights, caecal SCFA concentrations and breath H2. The diet with chicory supplementation enhanced peripheral acetate turnover by 25 % (P = 0.017) concomitant with an increase in plasma acetate concentration. There were no changes in propionate or butyrate turnovers. In conclusion, by setting up a multi-tracer approach to simultaneously assess the turnovers of acetate, propionate and butyrate it was demonstrated that a chronic chicory-rich diet significantly increases peripheral acetate turnover but not that of propionate or butyrate in rats.

Journal Article

Abstract  BACKGROUND: Therapies for peanut allergy (PNA) are urgently needed. Food Allergy Herbal Formula-2 (FAHF-2) has profound therapeutic effects in a murine PNA model and is safe for food-allergic adults in clinical trials. However, the large FAHF-2 pill-load is not conducive to clinical studies in children. Thus, refining FAHF-2 to decrease pill-load is essential for the inclusion of children in clinical trials and to facilitate studying FAHF-2 as a clinically useful botanical drug.

OBJECTIVES: Testing long-term efficacy and safety of a butanol-purified extract of FAHF-2 (B-FAHF-2) in a murine model of PNA, and to explore its immunological mechanisms of action.

METHODS: FAHF-2 was purified by butanol extraction. C3H/HeJ mice with established PNA received the first course of B-FAHF-2 at 6 mg, twice daily for 7 weeks (PNA/B-FAHF-2) or water (PNA/sham) and were then challenged immediately after completing the treatment and six more times every 1-2 months post-treatment up to week 50. Mice then received a second course of B-FAHF-2 treatment at week 52 and were challenged at week 65. In vivo and in vitro immunological effects on T, B and mast cells were also determined.

RESULTS: Butanol purification reduced the volume of the effective dose ∼5-fold. All PNA/B-FAHF-2 mice were completely protected from PN anaphylaxis until the fifth challenge after the first course of treatment, as compared with PNA/sham mice. Partial protection persisted up to 50 weeks. A second treatment course restored complete protection. B-FAHF-2 significantly suppressed Th2 cytokine, IgE and histamine levels in vivo, and showed direct inhibition of Th2, IgE-producing B cells and mast cell activation in vitro. B-FAHF-2 had a high margin of safety.

CONCLUSION AND CLINICAL RELEVANCE: B-FAHF-2 produced long-lasting protection against PN anaphylaxis for approximately half of the murine life span without side-effects. B-FAHF-2 exhibited direct effects on multiple food allergy effector cells.

Journal Article

Abstract  Colon cancer is a leading and expanding cause of death worldwide. A major contributory factor to this disease is diet composition; some components are beneficial (e.g, dietary fiber), whereas others are detrimental (e.g., alcohol). Garlic oil is a prominent dietary constituent that prevents the development of colorectal cancer. This effect is believed to be mainly due to diallyl disulphide (DADS), which selectively induces redox stress in cancerous (rather than normal) cells that leads to apoptotic cell death. However, the detailed mechanism by which DADS causes apoptosis remains unclear. We show that DADS treatment of colonic adenocarcinoma cells (HT-29) initiates a cascade of molecular events characteristic of apoptosis. These include a decrease in cellular proliferation, translocation of phosphatidylserine to the plasma-membrane outer-layer, activation of caspase-3 and -9, genomic DNA fragmentation, and G(2)/M phase cell-cycle arrest. Short-chain fatty acids (SCFAs), particularly butyrate (abundantly produced in the gut by bacterial fermentation of dietary polysaccharides), enhance colonic cell integrity but, in contrast, inhibit colonic cancer cell growth. Combining DADS with butyrate augmented the apoptotic effect of butyrate on HT-29 cells. These results suggest that the anticancerous properties of DADS afford greater benefit when supplied with other favorable dietary factors (short chain fatty acids/polysaccharides) that likewise reduce colonic tumor development.

Journal Article

Abstract  The purpose of the present work is to study the pancreatic lipase inhibitory effects of different subfractions (n-hexane, ethyl acetate (EA), n-butanol, and water) from ethanol extracts of nonfermented and fungi-fermented oats and to delineate the interactions of three primary phenolic acids in the EA subfractions. The EA subfraction showed the highest inhibitory effect on pancreatic lipase activity at 1.5 mg/mL compared to the other subfractions, regardless of whether the oats were fermented. Meanwhile, both of the EA subfractions of two fungi-fermented oats demonstrated more effective inhibitory activity than that of nonfermented oats. A positive correlation between the total phenolics content and inhibitory activity was found. The inhibitory ability of the EA subfraction from nonfermented or fermented oats also displayed a dose-dependent effect. The standards of caffeic, ferulic, and p-coumaric acids, mainly included in EA subfractions of fermented oats, also displayed a dose-dependent inhibitory effect. A synergistic effect of each binary combination of p-coumaric, ferulic, and caffeic acids was observed, especially at 150.0 μg/mL. Those results indicate that fungi-fermented oats have a more effective inhibitory ability on pancreatic lipase and polyphenols may be the most effective component and could be potentially used for dietary therapy of obesity.

Journal Article

Abstract  A psychrotrophic gram-negative bacterium Psychrobacter cryohalolentis K5(T) was previously isolated from a cryopeg within Siberian permafrost and its genome has been completely sequenced. To clone and characterize potential cold-active lipases/esterases produced by P. cryohalolentis K5(T) , we have identified their potential genes by alignment with amino acid sequences of lipases/esterases from related bacteria. One of the targets, EstPc, was cloned and overexpressed in Escherichia coli BL21 (DE3) cells. The recombinant protein was produced with a 6x histidine tag at its C-terminus and purified by nickel affinity chromatography. Purified recombinant protein displayed maximum esterolytic activity with p-nitrophenyl butyrate (C4) as a substrate at 35 °C and pH 8.5. Activity assay conducted at different temperatures revealed that EstPc is a cold-adapted esterase which displayed more than 90% of its maximum activity at 0-5 °C. In contrast to many known cold-active enzymes, it possesses relatively high thermostability, preserving more than 60% of activity after incubation for 1 h at 80 °C. It was activated by Ca(2+) , Mn(2+) , and EDTA whereas Zn(+2) , Cu(+2) , Co(+2) , Ni(+2) , and Mg(+2) inhibited it. Various organic solvents (ethanol, methanol and others) inhibited the enzyme. Most non-ionic detergents, such as Triton X-100 and Tween 20 increased the lipase activity while SDS completely inhibited it.

Journal Article

Abstract  UNLABELLED: ETHNOPHARMACOLOGICAL IMPORTANCE: Many Bauhinia species, including those indigenous to South Africa, are used in traditional medicine across the world for treating ailments such as gastrointestinal tract (GIT) disorders, diabetes, infectious diseases and inflammation.

AIMS: Several relevant aspects of different fractions of leaf extracts of Bauhinia bowkeri (BAB), Bauhinia galpinii (BAG), Bauhinia petersiana (BAP), and Bauhinia variegata (BAV) used in South African traditional medicine to alleviate diarrhoea related symptoms were evaluated.

MATERIALS AND METHODS: The antioxidative activities of the extracts were determined using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid (ABTS(+)) radical scavenging and ferric reducing antioxidant power (FRAP) methods. In vitro antimicrobial activities of the extracts were determined against bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus faecalis) and clinical isolates of the opportunistic fungal strains (Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans) using a serial dilution microplate method. The polyphenolic contents were quantified using standard methods, and anti-inflammatory activities of the crude extracts were determined using the cyclooxygenase and soybean 15-lipoxygenase enzyme inhibitory assays. The safety of the extracts was evaluated by determining the cytotoxicity against Vero cell lines.

RESULTS: The acidified 70% acetone crude extract and their fractions had good antiradical potency against the DPPH and ABTS radicals. The methanol soluble portions of the butanol fractions were more potent (EC(50) ranges from 0.64 ± 0.05 to 1.51 ± 0.07 and 0.88 ± 0.18 to 1.49 ± 0.09 μg/ml against DPPH and ABTS radical respectively) compared to the standard, trolox and ascorbic acid (EC(50) ranges from 1.47 ± 0.24 to 1.70 ± 0.27 μg/ml) for both DPPH and ABTS. The crude extracts contained variable quantities of phenolic content. The crude extracts and their fractions had weak to good antimicrobial activities, inhibiting the growth of the organisms at concentrations ranging from 39 to 2500 μg/ml. The BAG crude extract and its fractions were the most active against the fungi (MICs ranging from 39 to 625 μg/ml) while the BAB extract and its fractions were the least active with the MICs ranging between 39 and 2500 μg/ml. Aspergillus fumigatus was the least susceptible fungus while Cryptococcus neoformans was the most susceptible. The phenolic-rich crude extracts of BAB, BAG, and BAP had moderate to good dose-dependent cyclooxygenase-1 enzyme inhibitory activity with inhibitions between 22.8% and 71.4%. The extracts were however, inactive against cyclooxygenase-2. The extracts had some level of cytotoxicity towards Vero cell lines, reducing cell viability to less than 10% at concentrations more than 50 μg/ml.

CONCLUSION: The biological activities observed in Bauhinia species provide a scientific basis for the use of the plants in traditional medicines to treat diseases with multi-factorial pathogenesis such as diarrhoea, with each aspect of activity contributing to the ultimate therapeutic benefit of the plants. However, the use of the phenolic-rich extracts of these plants to treat diarrhoea or any other ailments in traditional medicine needs to be monitored closely because of potential toxic effects and selective inhibition of COX-1 with the associated GIT injury.

Journal Article

Abstract  Herein, we present a carboxylate-based dinuclear dysprosium compound, namely [Dy(2)L(6)(MeOH)(2)(H(2)O)(2)] (LH = n-butyric acid) from the reaction of Dy(NO(3))(3)·xH(2)O with n-butyric acid and triethylamine in MeOH solvent. The single crystal X-ray diffraction analysis demonstrate that a total of six monocarboxylate ligands formed this dimeric compound by carboxylate bridging along with coordination from solvent molecules (water and methanol). Each Dy(III) ion is coordinated by nine donor atoms forming a mono-capped antiprismatic coordination environment. Alternating current (AC) magnetic measurements show a frequency dependence of the out-of-phase magnetic susceptibilities (χ'') indicating a slow relaxation behaviour of the magnetization.

Journal Article

Abstract  Waste water containing high levels of NaCl from cucumber fermentation tank yards is a continuing problem for the pickled vegetable industry. A major reduction in waste salt could be achieved if NaCl were eliminated from the cucumber fermentation process. The objectives of this project were to ferment cucumbers in brine containing CaCl(2) as the only salt, to determine the course of fermentation metabolism in the absence of NaCl, and to compare firmness retention of cucumbers fermented in CaCl(2) brine during subsequent storage compared to cucumbers fermented in brines containing both NaCl and CaCl(2) at concentrations typically used in commercial fermentations. The major metabolite changes during fermentation without NaCl were conversion of sugars in the fresh cucumbers primarily to lactic acid which caused pH to decrease to less than 3.5. This is the same pattern that occurs when cucumbers are fermented with NaCl as the major brining salt. Lactic acid concentration and pH were stable during storage and there was no detectable production of propionic acid or butyric acid that would indicate growth of spoilage bacteria. Firmness retention in cucumbers fermented with 100 to 300 mM CaCl(2) during storage at a high temperature (45 degrees C) was not significantly different from that obtained in fermented cucumbers with 1.03 M NaCl and 40 mM CaCl(2). In closed jars, cucumber fermentations with and without NaCl in the fermentation brine were similar both in the chemical changes caused by the fermentative microorganisms and in the retention of firmness in the fermented cucumbers.

Journal Article

Abstract  The photosynthetic phosphoenolpyruvate carboxylase (C(4)-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca(2+)-dependent step. The present study investigates the cascade components at the higher integrated level of Sorghum bicolor leaf discs and leaves. PEPC-k up-regulation required light and photosynthetic electron transport. However, the PI-PLC inhibitor U-73122 and inhibitors of calcium release from intracellular stores only partially blocked this process. Analysis of [(32)P]phosphate-labelled phospholipids showed a light-dependent increase in phospholipase D (PLD) activity. Treatment of leaf discs with n-butanol, which decreases the formation of phosphatidic acid (PA) by PLD, led to the partial inhibition of the C(4)-PEPC phosphorylation, suggesting the participation of PLD/PA in the signalling cascade. PPCK1 gene expression was strictly light-dependent. Addition of neomycin or n-butanol decreased, and a combination of both inhibitors markedly reduced PPCK1 expression and the concomitant rise in PEPC-k activity. The calcium/calmodulin antagonist W7 blocked the light-dependent up-regulation of PEPC-k, pointing to a Ca(2+)-dependent protein kinase (CDPK) integrating both second messengers, calcium and PA, which were shown to increase the activity of sorghum CDPK.

Journal Article

Abstract  Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.

Journal Article

Abstract  BACKGROUND: The lack of a brain-derived endothelial cell-based model has led researchers to exploit non-brain endothelial/epithelial cells as in vitro models for blood-brain barrier (BBB) investigations. Of these, the endothelial-like human ECV304 cell line was initially characterized as endothelial cells and has been widely used as an in vitro BBB model. It was later shown to be T24 bladder carcinoma epithelial cells. To pursue its potential as a cell-based model for drug screening and transport machineries, ECV304 cells were evaluated for their barrier and plasma membrane characteristics.

MATERIAL/METHODS: ECV304 cells treated with some tight-junction modulators (e.g. cAMP elevators, butyric acid, dexamethasone, gamma-linolenic acid, and astrocytic factors) were examined for bioelectrical resistance, transcellular/paracellular permeability, and functionality expression of some key transporters.

RESULTS: A significant (p<0.05) increase in trans-endothelial electrical resistance (TEER) was observed in ECV304 cells treated with astrocytic factors and cAMP elevators (i.e. to approximately 110Omega*cm2 vs. approximately 60 Omega*cm2 in the control). Such treatment also yielded high discrimination in the permeability coefficients of the transcellular marker propranolol (25x10-6 cm/sec) and the paracellular marker sucrose (11.3 x 10-6 cm/sec). Carrier-mediated transporters such as GLUT-1, system L, and P-glycoprotein (P-gp) as well as endocytic transport machineries (e.g. clathrin and caveolin) were found to be functionally expressed.

CONCLUSIONS: ECV304 cells failed to generate a discriminative tight barrier even in the presence of tight-junction modulators. Thus their implementation in drug permeability screening is not recommended. They display some important key carrier-mediated transport systems and can be considered as a useful cell-based in vitro model.

Journal Article

Abstract  The aim of the present study was to investigate the test-retest reliability of the olfactory detection threshold subtest of the Sniffin' Sticks test battery, if administered repeatedly on 4 time points. The detection threshold test was repeatedly conducted in 64 healthy subjects. On the first testing session, the threshold test was accomplished 3 times (T(1) = 0 min, T(2) = 35 min, and T(3) = 105 min), representing a short-term testing. A fourth threshold test was conducted on a second testing session (T(4) = 35.1 days after the first testing session), representing a long-term testing. The average scores for olfactory detection threshold for n-butanol did not differ significantly across the 4 points of time. The test-retest reliability (Pearson's r) between the 4 time points of threshold testing were in a range of 0.43-0.85 (P < 0.01). These results support the notion that the olfactory detection threshold test is a highly reliable method for repeated olfactory testing, even if the test is repeated more than once per day and over a long-term period. It is concluded that the olfactory detection threshold test of the Sniffin' Sticks is suitable for repeated testing during experimental or clinical studies.

Journal Article

Abstract  Diacylglycerides (DAGs) such as 1-oleoyl-2-acetyl-sn-glycerol (OAG) stimulate 5-lipoxygenase (5-LO) enzyme activity and function as agonists for human polymorphonuclear leukocytes (PMNL) to induce 5-LO product synthesis. Here, we addressed the role of endogenous DAG generation in agonist-induced 5-LO activation in human PMNL. Preincubation of PMNL with the phospholipase D (PLD) inhibitor 1-butanol potently suppressed 5-LO product synthesis induced by the Ca(2)(+) ionophore A23187 or thapsigargin (TG) and blocked A23187-evoked translocation of 5-LO from the cytosol to the nuclear membrane, analyzed by subcellular fractionation as well as by indirect immunofluorescence microscopy. Tertiary-butanol, a rather poor inhibitor of PLD, caused only moderate suppression of 5-LO and hardly inhibited 5-LO translocation. Interestingly, 1-butanol failed to inhibit 5-LO product formation when PMNL were stimulated with OAG (30 microM). Moreover, coincubation of A23187- or TG-stimulated PMNL with OAG reversed inhibition of 5-LO product formation by 1-butanol in a concentration-dependent manner (EC(50), approximately 1 muM) and also restored 5-LO translocation. In addition, inhibition of phosphatidic acid phosphatase (PA-P) by propranolol or bromoenol lactone caused suppression of 5-LO product formation and of translocation, which could be reversed by addition of exogenous OAG. Together, our data suggest that in agonist-stimulated PMNL, the endogenous formation of DAGs via the PLD/PA-P pathway determines 5-LO activation.

Journal Article

Abstract  The immediate-early (IE) BZLF1 gene of Epstein-Barr virus (EBV) regulates the switch between latent and lytic infection by EBV. We previously showed that the cellular transcription factor ZEB1 binds to a sequence element, ZV, located at nt -17 to -12 relative to the transcription initiation site of the BZLF1 promoter, Zp, repressing transcription from Zp in a transient transfection assay. Here, we report the phenotype in the context of a whole EBV genome of a variant of EBV strain B95.8 containing a 2-bp substitution mutation in the ZV element of Zp that reduced, but did not eliminate, ZEB1 binding to Zp. Strikingly, epithelial 293 cells latently infected with the EBV ZV mutant spontaneously produced IE-, early-, and late-gene products and infectious virus, while wild-type (WT)-infected 293 cells did not and have never been reported to do so. Furthermore, treatment with the chemical inducers sodium butyrate and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) led to an additional order-of-magnitude production of infectious virus in the ZV mutant-infected 293 cells, but still no virus in the WT-infected 293 cells. Similarly, ZV mutant-infected Burkitt's lymphoma BJAB cells accumulated at least 10-fold more EBV IE mRNAs than did WT-infected BJAB cells, with TPA or sodium butyrate treatment leading to an additional 5- to 10-fold accumulation of EBV IE mRNAs in the ZV mutant-infected cells. Thus, we conclude that ZEB1 binding to Zp plays a central role in regulating the latent-lytic switch in EBV-infected epithelial and B cells, suggesting ZEB1 as a target for lytic-induction therapies in EBV-associated malignancies.

Journal Article

Abstract  Although organelles such as the endoplasmic reticulum and Golgi apparatus are highly compartmentalized, these organelles are interconnected through a network of vesicular trafficking. The marine sponge metabolite ilimaquinone (IQ) is known to induce Golgi membrane fragmentation and is widely used to study the mechanism of vesicular trafficking. Although IQ treatment causes protein kinase D (PKD) activation, the detailed mechanism of IQ-induced Golgi membrane fragmentation remains unclear. In this work, we found that IQ treatment of cells caused a robust activation of phospholipase D (PLD). In the presence of 1-butanol but not 2-butanol, IQ-induced Golgi membrane fragmentation was completely blocked. In addition, IQ failed to induce Golgi membrane fragmentation in PLD knock-out DT40 cells. Furthermore, IQ-induced PKD activation was completely blocked by treatment with either 1-butanol or propranolol. Notably, IQ-induced Golgi membrane fragmentation was also blocked by propranolol treatment. These results indicate that PLD-catalyzed formation of phosphatidic acid is a prerequisite for IQ-induced Golgi membrane fragmentation and that enzymatic conversion of phosphatidic acid to diacylglycerol is necessary for subsequent activation of PKD and IQ-induced Golgi membrane fragmentation.

Journal Article

Abstract  Broadband acoustic emission signals were obtained by attaching a piezoelectric transducer, sensitive up to 750 kHz, to the external wall of a 1 L jacketed glass reactor. Measurements were acquired of itaconic acid particles mixing in toluene; the total area of the acoustic emission signal from 55-500 kHz increased when the particle concentration, particle size or stir rate were increased. Signals at frequencies above 200 kHz were less sensitive to changes in particle size than those at lower frequencies. From calculation of the area of the signal in the range 55-200 kHz as a percentage of the signal area over the range 55-500 kHz, for mixtures of different size ranges of itaconic acid, it was possible to obtain an estimate of the mean particle size of a mixture. The heterogeneous esterification reaction of itaconic acid and 1-butanol was monitored non-invasively. A decrease in the overall acoustic signal area between 60 and 500 kHz was observed as the reaction progressed. Particle size and concentration information were contained in the amplitude of the acoustic emission signal, while the emission frequency yielded information on changes in the mean particle size.

Journal Article

Abstract  Abstract Context: There is a need for the discovery of novel natural antioxidants and acetylcholinesterase inhibitors (AChEIs) that are safe and effective at a global level. This is the first study on antioxidant and anti-acethylcholinesterase activity of Scabiosa arenaria Forssk (Dipsacaceae). Objective: The antioxidant potential and anti-acetylcholinesterase (AChE) activity of S. arenaria were investigated. Material and methods: The crude, ethyl acetate (EtOAc), butanol (n-BuOH) and water extracts prepared from flowers, fruits and stems and leaves of S. arenaria were tested to determine their total polyphenol content (TPC), total flavonoid content (TFC), total condensed tannin content (CTC) and their antioxidant activity by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power and β-carotene bleaching inhibition activity. Anti-AChE activity was also determined. Results: EtOAc and n-BuOH fractions of fruits had both the highest (TPC) (269.09 mg gallic acid equivalents/g dry weight). The crude extract of stems and leaves had the highest TFC (10.9 mg quercetin equivalent/g dry weight). The n-BuOH fraction of stems and leaves had the highest CTC (489.75 mg catechin equivalents/g dry weight). The EtOAc fraction of flowers exhibit a higher activity in each antioxidant system with a special attention for DPPH assay (IC(50) = 0.017 mg/mL) and reducing power (EC(50) = 0.02 mg/mL). The EtOAc and n-BuOH fractions of stems and leaves showed strong inhibition of AChE (IC(50) = 0.016 and 0.029 mg/mL, respectively). Discussion and conclusions: These results suggest the potential of S. arenaria as a possible source of novel compounds and as an alternative antioxidant and AChEIs.

Journal Article

Abstract  Abstract Mentha longifolia is an aromatic plant used in flavoring and preserving foods and as an anti-inflammatory folk medicine remedy. The present study assessed the effects of M. longifolia extracts, including essential oil and crude methanol extract and its fractions (ethyl acetate, butanol and hexane), on nitric oxide (NO) production and inducible NO synthase (iNOS) mRNA expression in lipopolysaccharide (LPS)-stimulated J774A.1 cells using real-time polymerase chain reaction (PCR). The cytotoxic effects of the extracts on the cells were examined and non-cytotoxic concentrations (<0.2 mg/ml) were used to examine their effects on NO production and iNOS mRNA expression. Only the hexane fraction that contained high levels of phenolic and flavonoid compounds at concentrations from 0.05-0.20 mg/ml significantly reduced NO production in LPS-stimulated cells (p < 0.001). Real-time PCR analysis indicated the ability of this fraction at the same concentrations to significantly decrease iNOS as well as TNFα mRNA expression in the cells (p < 0.001). All extracts were able to scavenge NO radicals in a concentration-dependent manner. At concentrations greater than 0.2 mg/ml, total radicals were 100% scavenged. In conclusion, M. longifolia possibly reduces NO secretion in macrophages by scavenging NO and inhibiting iNOS mRNA expression, and also decreases TNFα pro-inflammatory cytokine expression, thus showing its usefulness in the inflammatory disease process.

Journal Article

Abstract  Dietary fibers can be fermented in the colon, resulting in production of short-chain fatty acids (SCFA) and secretion of satiety-related peptides. Fermentation characteristics (fermentation kinetics and SCFA-profile) differ between fibers and could impact their satiating potential. We investigated the effects of fibers with varying fermentation characteristics on feeding motivation in adult female pigs. Sixteen pair-housed pigs received four diets in four periods in a Latin square design. Starch from a control (C) diet was exchanged, based on gross energy, for inulin (INU), guar gum (GG), or retrograded tapioca starch (RS), each at a low (L) and a high (H) inclusion level. This resulted in a decreased metabolizable energy intake when feeding fiber diets as compared with the C diet. According to in vitro fermentation measurements, INU is rapidly fermentable and yields relatively high amounts of propionate, GG is moderately rapidly fermentable and yields relatively high amounts of acetate, and RS is slowly fermentable and yields relatively high amounts of butyrate. Feeding motivation was assessed using behavioral tests at 1h, 3h and 7h after the morning meal, and home pen behavioral observations throughout the day. The number of wheel turns paid for a food reward in an operant test was unaffected by diet. Pigs on H-diets ran 25% slower for a food reward in a runway test than pigs on L-diets, and showed less spontaneous physical activity and less stereotypic behavior in the hours before the afternoon meal, reflecting increased interprandial satiety. Reduced feeding motivation with increasing inclusion level was most pronounced for RS, as pigs decreased speed in the runway test and tended to have a lower voluntary food intake in an ad libitum food intake test when fed RS-H. In conclusion, increasing levels of fermentable fibers in the diet seemed to enhance satiety in adult pigs, despite a reduction in metabolizable energy supply. RS was the most satiating fiber, possibly due to its slow rate of fermentation and high production of butyrate.

  • <<
  • 2 of 32
  • >>
Filter Results