n-Butanol

Project ID

1542

Category

IRIS

Added on

Dec. 14, 2010, 3:50 p.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Damage to the auditory system following high-level sound exposure reduces afferent input. Homeostatic mechanisms appear to compensate for the loss. Overcompensation may produce the sensation of sound without an objective physical correlate, i.e., tinnitus. Several potential compensatory neural processes have been identified, such as increased spontaneous activity. The cellular mechanisms enabling such compensatory processes may involve down-regulation of inhibitory neurotransmission mediated by γ-amino butyric acid (GABA), and/or up-regulation of excitatory neurotransmission, mediated by glutamic acid (Glu). Because central processing systems are integrated and well-regulated, compensatory changes in one system may produce reactive changes in others. Some or all may be relevant to tinnitus. To examine the roles of GABA and Glu in tinnitus, high resolution point-resolved proton magnetic resonance spectroscopy ((1)H-MRS) was used to quantify their levels in the dorsal cochlear nucleus (DCN), inferior colliculus (IC), medial geniculate body (MGB), and primary auditory cortex (A1) of rats. Chronic tinnitus was produced by a single high-level unilateral exposure to noise, and was measured using a psychophysical procedure sensitive to tinnitus. Decreased GABA levels were evident only in the MGB, with the greatest decrease, relative to unexposed controls, obtained in the contralateral MGB. Small GABA increases may have been present bilaterally in A1 and in the contralateral DCN. Although Glu levels showed considerable variation, Glu was moderately and bilaterally elevated both in the DCN and in A1. In the MGB Glu was increased ipsilaterally but decreased contralaterally. These bidirectional and region-specific alterations in GABA and Glu may reflect large-scale changes in inhibitory and excitatory equilibrium accompanying chronic tinnitus. The present results also suggest that targeting both neurotransmitter systems may be optimal in developing more effective therapeutics.

Journal Article

Abstract  OBJECTIVE: To investigate the mechanism underlying sodium butyrate (NaB)-induced apoptosis of a human colon cancer cell line HCT-116.

METHODS: The apoptosis of HCT-116 cells induced by NaB was confirmed by hoechst33342 staining and AnnexinV+ PI assay. The changes in the intracellular localization of stromal interaction molecule (STIM1) and Orai1 following NaB treatment were detected by immunofluorescence technique. Western blotting was used to investigate the protein expression levels of STIM1 and Orai1.

RESULTS: NaB induced apoptosis and caused translocation and colocalization of STIM1 and Orai1 in HCT-116 cells.

CONCLUSION: The apoptosis of human colon cancer cells induced by NaB is correlated to the redistribution of STIM1 and Orai1.

Journal Article

Abstract  Lesogaberan is a potent gamma amino butyric acid agonist and has been evaluated for its utility in treatment of gastroesophageal reflux disease. Lesogaberan is a crystalline substance that absorbs considerable amounts of water above 65% relative humidity (RH) where it also liquifies. As a result of the hygroscopicity of the zwitterionic form an investigation of different salt forms was performed. Since the test compound is polar and lacks ultraviolet (UV) chromophore, conventional separation and detection techniques could not be used to characterise the test compound and the impurities. The analytical techniques are described, focusing on the capillary electrophoresis method with indirect UV detection for purity, the liquid chromatographic method for enantiomeric separation with derivatisation with UV chromophore and two complementary nuclear magnetic resonance (NMR) approaches ((19)F-NMR and (1)H-NMR) for impurities. The stability study in solution showed that solutions between pH 5 and 7 were the most stable ones, but after some time degradation occurred at room temperature. When bulk lesogaberan was stored at 25°C/60% RH no chemical degradation was observed after 1 year. At 40°C/75% RH, where the compound liquefies, a significant degradation was observed after 1 month. However, in a closed container (= 40°C) or as a napsylate salt, no degradation of lesogaberan was observed at 40°C/75% RH.

Journal Article

Abstract  Record-setting organic photovoltaic cells with PTB polymers have recently achieved ~8% power conversion efficiencies (PCE). A subset of these polymers, the PTBF series, has a common conjugated backbone with alternating thieno[3,4-b]thiophene and benzodithiophene moieties but differs by the number and position of pendant fluorine atoms attached to the backbone. These electron-withdrawing pendant fluorine atoms fine tune the energetics of the polymers and result in device PCE variations of 2-8%. Using near-IR, ultrafast optical transient absorption (TA) spectroscopy combined with steady-state electrochemical methods we were able to obtain TA signatures not only for the exciton and charge-separated states but also for an intramolecular ("pseudo") charge-transfer state in isolated PTBF polymers in solution, in the absence of the acceptor phenyl-C(61)-butyric acid methyl ester (PCBM) molecules. This led to the discovery of branched pathways for intramolecular, ultrafast exciton splitting to populate (a) the charge-separated states or (b) the intramolecular charge-transfer states on the subpicosecond time scale. Depending on the number and position of the fluorine pendant atoms, the charge-separation/transfer kinetics and their branching ratios vary according to the trend for the electron density distribution in favor of the local charge-separation direction. More importantly, a linear correlation is found between the branching ratio of intramolecular charge transfer and the charge separation of hole-electron pairs in isolated polymers versus the device fill factor and PCE. The origin of this correlation and its implications in materials design and device performance are discussed.

Journal Article

Abstract  Diet-derived butyrate, a histone deacetylase inhibitor (HDI), decreases proliferation and increases apoptosis in colorectal cancer (CRC) cells via epigenetic changes in gene expression. Other HDIs such as suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) have similar effects. This study examined the role of microRNAs (miRNAs) in mediating the chemo-protective effects of HDIs, and explored functions of the oncogenic miR-17-92 cluster. The dysregulated miRNA expression observed in HT29 and HCT116 CRC cells could be epigenetically altered by butyrate, SAHA and TSA. These HDIs decreased expression of miR-17-92 cluster miRNAs (P < 0.05), with a corresponding increase in miR-17-92 target genes, including PTEN, BCL2L11, and CDKN1A (P < 0.05). The decrease in miR-17-92 expression may be partly responsible for the anti-proliferative effects of HDIs, with introduction of miR-17-92 cluster miRNA mimics reversing this effect and decreasing levels of PTEN, BCL2L11, and CDKN1A (P < 0.05). The growth effects of HDIs may be mediated by changes in miRNA activity, with down-regulation of the miR-17-92 cluster a plausible mechanism to explain some of the chemo-protective effects of HDIs. Of the miR-17-92 cluster miRNAs, miR-19a and miR-19b were primarily responsible for promoting proliferation, while miR-18a acted in opposition to other cluster members to decrease growth. NEDD9 and CDK19 were identified as novel miR-18a targets and were shown to be pro-proliferative genes, with RNA interference of their transcripts decreasing proliferation in CRC cells. This is the first study to identify competing roles for miR-17-92 cluster members, in the context of HDI-induced changes in CRC cells. © 2012 Wiley Periodicals, Inc.

Journal Article

Abstract  The blend morphology and vertical arrangement are critical to the performance of organic bulk-heterojunction photovoltaic devices. In the present paper, the authors proposed a new annealing method that controls the blend morphology and vertical arrangement of two materials by means of simultaneously applying external electrical field and violet irradiation on the active layer of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) during annealing process. By using this annealing method, the power conversion efficiency increased by 36%, which was caused by vertical phased-separated blend of crystalline P3HT and PCBM and better charge extraction of electrodes. X-ray photoelectron spectroscopy (XPS) was measured to prove more fullerene derivatives at the organic/cathode interfaces by using this annealing method. The X-ray diffraction (XRD) analysis and UV-Vis absorption spectrum analysis also revealed more ordered polymer crystallization.

Journal Article

Abstract  The measurement of brain metabolites with magnetic resonance spectroscopy (MRS) provides a unique perspective on the brain bases of neuropsychiatric disorders. As a context for interpreting MRS studies of neuropsychiatric disorders, we review the characteristic MRS signals, the metabolic dynamics, and the neurobiological significance of the major brain metabolites that can be measured using clinical MRS systems. These metabolites include N-acetylaspartate (NAA), creatine, choline-containing compounds, myo-inositol, glutamate and glutamine, lactate, and gamma-amino butyric acid (GABA). For the major adult neuropsychiatric disorders (schizophrenia, bipolar disorder, major depression, and the anxiety disorders), we highlight the most consistent MRS findings, with an emphasis on those with potential clinical or translational significance. Reduced NAA in specific brain regions in schizophrenia, bipolar disorder, post-traumatic stress disorder, and obsessive-compulsive disorder corroborate findings of reduced brain volumes in the same regions. Future MRS studies may help determine the extent to which the neuronal dysfunction suggested by these findings is reversible in these disorders. Elevated glutamate and glutamine (Glx) in patients with bipolar disorder and reduced Glx in patients with unipolar major depression support models of increased and decreased glutamatergic function, respectively, in those conditions. Reduced phosphomonoesters and intracellular pH in bipolar disorder and elevated dynamic lactate responses in panic disorder are consistent with metabolic models of pathogenesis in those disorders. Preliminary findings of an increased glutamine/glutamate ratio and decreased GABA in patients with schizophrenia are consistent with a model of NMDA hypofunction in that disorder. As MRS methods continue to improve, future studies may further advance our understanding of the natural history of psychiatric illnesses, improve our ability to test translational models of pathogenesis, clarify therapeutic mechanisms of action, and allow clinical monitoring of the effects of interventions on brain metabolic markers.

Journal Article

Abstract  The aim of the study was to investigate the effect of feeding different diets on fermentation, enzyme activities and microbial population in the rumen fluid of mithun (Bos frontalis). In a randomized block design, 20 male mithun (6-8 months of age, 152 ± 12.6 kg body weight) were randomly divided into four experimental groups (n = 5/group) and fed experimental diets ad libitum for 180 days. The diet R(1) contained tree foliages (TF), R(2) comprised of 50% concentrate mixture (CM) and 50% TF, R(3) contained 50% CM and 50% rice straw, and R(4) contained 50% CM, 25% TF and 25% rice straw. Rumen liquor was collected at 0 and 180 days of the experiment for estimation of different ruminal parameters and a digestion trial was conducted at the end of the experiment. Rumen fluid was analysed for pH, ammonia nitrogen (NH(3) -N), total-N, ruminal enzymes, short chain fatty acid (SCFA) and microbial profile. The relative quantification of ruminal microbes was carried out with real-time PCR using bacteria as the house keeping gene. The dry matter intake, nutrients digestibility, body weight gain, NH(3) -N, total-N, carboxymethyl cellulase, avicelase, xylanase, amylase, protease and molar proportion of butyrate were (p < 0.05) higher in mithun fed R(2) , R(3) and R(4) compared to those fed R(1) diet. In contrast, increased (p < 0.05) ruminal pH, molar proportion of acetate and, acetate to propionate ratio was recorded in mithun fed only TF than those fed concentrate supplemented diets. Similarly, an increase (p < 0.05) in the population of Fibrobacter succinogenes, Ruminococcus flavefaciens and total bacteria were evident in mithun fed R(2) , R(3) and R(4) compared to those fed R(1) . Therefore, it is concluded that TF 25% and/or rice straw 25% along with CM 50% may be fed to the growing mithun for improved rumen ecology, nutrient utilization and thus better performance under stall fed system.

Journal Article

Abstract  The total phenolic content (Folin-Ciocalteu) of the leaves of Ficus benjamina and Ficus luschnathiana was evaluated and screened by HPLC-DAD. Ficus luschnathiana crude extract (CE) presented phenolic content higher than that of F. benjamina (149.92 ± 3.65 versus 122.63 ± 2.79 mg of GAE). Kaempferol (1.63 ± 0.16 mg g(-1) dry weight of CE) and chlorogenic acid (17.77 ± 0.57 mg g(-1) of butanolic fraction) were identified and quantified in F. benjamina, whereas rutin (1.39 ± 0.20 mg g(-1)), caffeic (1.14 ± 0.13 mg g(-1)) and chlorogenic (3.73 ± 0.29 mg g(-1)) acids were quantified in the CE of F. luschnathiana. Additionaly, rutin (15.55 ± 1.92 mg g(-1)) and quercetin (3.53 ± 0.12 mg g(-1)) were quantified in ethyl acetate and butanolic fractions, respectively. Antimycobacterial activity of CEs and fractions was evaluated against Mycobacterium smegmatis by broth microdilution method. Ethyl acetate fraction from F. benjamina and n-butanol fraction from F. luschnathiana displayed the highest inhibitory activity (MIC = 312.50 µg mL(-1) and 156.25 µg mL(-1), respectively). Further studies are required to identify the compounds directly related to antimycobacterial activity.

Journal Article

Abstract  Two novel obligately anaerobic, Gram-stain-positive, saccharolytic and non-proteolytic spore-forming bacilli (strains CD3:22(T) and N1(T)) are described. Strain CD3:22(T) was isolated from a biopsy of the small intestine of a child with coeliac disease, and strain N1(T) from the saliva of a healthy young man. The cells of both strains were observed to be filamentous, approximately 5 to >20 µm long, some of them curving and with swellings. The novel organisms produced H(2)S, NH(3), butyric acid and acetic acid as major metabolic end products. Phylogenetic analyses, based on comparative 16S rRNA gene sequencing, revealed close relationships (98% sequence similarity) between the two isolates, as well as the type strain of Eubacterium saburreum and four other Lachnospiraceae bacterium-/E. saburreum-like organisms. This group of bacteria were clearly different from any of the 19 known genera in the family Lachnospiraceae. While Eubacterium species are reported to be non-spore-forming, reanalysis of E. saburreum CCUG 28089(T) confirmed that the bacterium is indeed able to form spores. Based on 16S rRNA gene sequencing, phenotypic and biochemical properties, strains CD3:22(T) and N1(T) represent novel species of a new and distinct genus, named Lachnoanaerobaculum gen. nov., in the family Lachnospiraceae [within the order Clostridiales, class Clostridia, phylum Firmicutes]. Strain CD3:22(T) (=CCUG 58757(T) =DSM 23576(T)) is the type strain of the type species, Lachnoanaerobaculum umeaense gen. nov., sp. nov., of the proposed new genus. Strain N1(T) (=CCUG 60305(T)=DSM 24553(T)) is the type strain of Lachnoanaerobaculum orale sp. nov. Moreover, Eubacterium saburreum is reclassified as Lachnoanaerobaculum saburreum comb. nov. (type strain CCUG 28089(T) =ATCC 33271(T) =CIP 105341(T) =DSM 3986(T) =JCM 11021(T) =VPI 11763(T)).

Journal Article

Abstract  The title compound, C(11)H(15)NO(6)S, features a distorted tetra-hedral geometry for the S atom. One of the sulfonamide O atoms is approximately coplanar with the benzene ring [C-C-S-O torsion angle = -160.81 (7)°], whereas the other lies well below the plane [C-C-S-O = -29.66 (8)°]. In the crystal, O-H⋯O and C-H⋯O hydrogen bonds link the mol-ecules into chains parallel to the b axis.

Journal Article

Abstract  Atorvastatin and suberoylanilide hydroxamic acid (SAHA) were evaluated for chemoprevention of mouse lung tumors. In Experiment 1, lung tumors were induced by vinyl carbamate in strain A/J mice followed by 500 mg/kg SAHA, 60 or 180 mg/kg atorvastatin, and combinations containing SAHA and atorvastatin administered in their diet. SAHA and both combinations, but not atorvastatin, decreased the multiplicity of lung tumors, including large adenomas and adenocarcinomas with the combinations demonstrating the greatest efficacy. In Experiment 2, lung tumors were induced by 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanol in strain A/J mice followed by 180 mg/kg atorvastatin, 500 mg/kg SAHA, or both drugs administered in the diet. SAHA and the combination of both drugs, but not atorvastatin alone, decreased the multiplicity of lung tumors and large tumors, with the combination demonstrating greater efficacy. In Experiment 3, lung tumors were induced by 1,2-dimethylhydrazine in Swiss-Webster mice followed by 160 mg/kg atorvastatin, 400 mg/kg SAHA, or a combination of both drugs administered in the diet. SAHA and the combination, but not atorvastatin, decreased the multiplicity of lung tumors with the combination demonstrating greater efficacy. The multiplicity of colon tumors was decreased by SAHA, atorvastatin, and the combination, without any significant difference in their efficacy. mRNA expression analysis of lung tumor bearing mice suggested that the enhanced chemopreventive activity of the combination is related to atorvastatin modulation of DNA repair, SAHA modulation of angiogenesis, and both drugs modulating invasion and metastasis pathways. Atorvastatin demonstrated chemoprevention activity as indicated by the enhancement of the efficacy of SAHA to prevent mouse lung tumors.

Journal Article

Abstract  Unmodified Fe(3)O(4) nanoparticles do not stabilize Pickering emulsions of a polar oil like butyl butyrate. In order to obtain stable emulsions, the Fe(3)O(4) nanoparticles were modified by either carboxylic acid (RCOOH) or silane coupling agents (RSi(OC(2)H(5))(3)) to increase their hydrophobicity. The influence of such surface modification on the stability of the resultant Pickering emulsions was investigated in detail for both a non-polar oil (dodecane) and butyl butyrate in mixtures with water. The stability of dodecane-in-water emulsions in the presence of carboxylic acid-coated particles decreases as the length of the alkyl group (R) and the coating extent increase. However, such particles are incapable of stabilizing butyl butyrate-water emulsions even when the carboxylic acid length is decreased to two. However, the silane-coated Fe(3)O(4) nanoparticles can stabilize butyl butyrate-in-water emulsions, and they also increase the stability of dodecane-in-water emulsions. Thermal gravimetric analysis indicates that the molar quantity of silane reagent is much higher than that of carboxylic acid on nanoparticle surfaces after modification, raising their hydrophobicity and enabling enhanced stability of the resultant polar oil-water emulsions.

Journal Article

Abstract  We study the appearance and energy of the charge transfer (CT) state using measurements of electroluminescence (EL) and photoluminescence (PL) in blend films of high-performance polymers with fullerene acceptors. EL spectroscopy provides a direct probe of the energy of the interfacial states without the need to rely on the LUMO and HOMO energies as estimated in pristine materials. For each polymer, we use different fullerenes with varying LUMO levels as electron acceptors, in order to vary the energy of the CT state relative to the blend with [6,6]-phenyl C61-butyric acid methyl ester (PCBM). As the energy of the CT state emission approaches the absorption onset of the blend component with the smaller optical bandgap, E(opt,min) ≡ min{E(opt,donor); E(opt,acceptor)}, we observe a transition in the EL spectrum from CT emission to singlet emission from the component with the smaller bandgap. The appearance of component singlet emission coincides with reduced photocurrent and fill factor. We conclude that the open circuit voltage V(OC) is limited by the smaller bandgap of the two blend components. From the losses of the studied materials, we derive an empirical limit for the open circuit voltage: V(OC) ≲ E(opt,min)/e - (0.66 ± 0.08)eV.

Journal Article

Abstract  We have demonstrated the poly(3-hexyl-thiophene-1,5-diyl) (P3HT):[6,6]-phenyl C61-butyric acid methyl ester (PCBM) bulk heterojunction (BHJ) organic photovoltaic (OPV) devices on various poly(3,4-ethylene-dioxythiophene):poly(styrenesulfonate) (PEDOT:PSSs). The device with PEDOT:PSS of PH 500 adding 1% dimethyl sulfoxide (DMSO) showed the best performances in term of the fill factor and power conversion efficiency (PCE) than others. The hole extraction ability of PEDOT:PSS is very important to balance between holes and electrons mobility because the carrier mobility of PCBM (approximately 10(-4) cm2/Vs) is higher than that of P3HT (approximately 10(-6) cm2/Vs) in P3HT:PCBM BHJ structure. The optimized BHJ OPV with PEDOT:PSS of PH 500 adding 1% DMSO showed a short-circuit current density of 8.92 mA/cm2 and a PCE of 2.97%, which was nearly increased to 2.5 times than that of control device with PEDOT:PSS of P VP Al 4083.

Journal Article

Abstract  Enriched environments (EEs) during development have been shown to influence adult behaviour. Environmental conditions during childhood may contribute to the onset and/or pathology of schizophrenia; however, it remains unclear whether EE might prevent the development of schizophrenia. Herein, we investigated the effects of EE during adolescence on phencyclidine (PCP)-induced abnormal behaviour, a proposed schizophrenic endophenotype. Male ICR mice (3 wk old) were exposed to an EE for 4 wk and then treated with PCP for 2 wk. The EE potentiated the acute PCP treatment-induced hyperlocomotion in the locomotor test and prevented chronic PCP treatment-induced impairments of social behaviour and recognition memory in the social interaction and novel object recognition tests. It also prevented the PCP-induced decrease of acetylated Lys9 in histone H3-positive cells and increase of the histone deacetylase (HDAC)5 level in the prefrontal cortex. To investigate whether the histone modification during adolescence might be critical for the effect of EE, 3-wk-old mice were first treated with sodium butyrate (SB; an HDAC inhibitor) for 4 wk and then treated with PCP for 2 wk. Chronic SB treatment during adolescence mimicked the effects of EE, including potentiation of hyperlocomotion induced by acute PCP treatment and prevention of social and cognitive impairments, decrease of acetylated Lys9 in histone H3-positive cells and increase of the HDAC5 level in the prefrontal cortex associated with chronic PCP treatment. Our results suggest that EEs prevent PCP-induced abnormal behaviour associated with histone deacetylation. EEs during childhood might prove to be a novel strategy for prophylaxis against schizophrenia.

Journal Article

Abstract  We demonstrate the fabrication of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) nanogratings by a dehydration-assisted nanoimprint lithographic technique. Dehydration of PEDOT:PSS increases its cohesion to protect the nanostructures formed by nanoimprinting during demolding, resulting in the formation of high quality nanogratings of 60 nm in height, 70 nm in width and 70 nm in spacing (aspect ratio of 0.86). PEDOT:PSS nanogratings are used as hole transport and an electron blocking layer in blended poly(3-hexylthiophene-2,5-diyl) (P3HT):[6,6]-penyl-C61-butyric-acid-methyl-ester (PCBM) organic photovoltaic devices (OPV), showing enhancement of photocurrent and power efficiency in comparison to OPV devices with non-patterned PEDOT:PSS films.

Journal Article

Abstract  The cytotoxic chloroform fraction of Euphorbia aellenii Rech. F. (Euphorbiaceae) afforded two new phorbol diterpenoids: 4-deoxy-4α-phorbol-12-(2,3-dimethyl) butyrate-13-isobutyrate and 17-hydroxy-4-deoxy-4α-phorbol-12-(2,3-dimethyl) butyrate-13-isobutyrate. Their structures were elucidated by NMR and other spectroscopic methods. The immunomodulating potentials of the isolated compounds were tested using standard proliferation and chemiluminescence assays. Compound 2 showed moderate inhibitory activity against both T-cell proliferation and reactive oxygen species (ROS) production in whole blood with IC50 of 14.0 ± 0.57 and 44.1 ± 3.8 μg/ml, respectively, while compound 1 was relatively inactive with IC50 >50 μg/mL for T-cell proliferation, and >100 μg/mL for ROS.

Journal Article

Abstract  This study examined the potential antilithic effects of a traditional Chinese medicine Urtica dentata Hand (UDH) in experimental rats and screened the optimal extract of UDH as a possible therapeutic agent for kidney stones. The rat model of urinary calcium oxalate stones was induced by intragastric (i.g.) administration of 2 mL of 1.25% ethylene glycol (EG) and 1% ammonium chloride (AC) for 28 days and was confirmed by Color Doppler ultrasound imaging. The rats in different experimental groups were then intragastrically given petroleum ether extract (PEE), N-butanol extract (NBE), aqueous extract (AqE) of UDH, Jieshitong (positive control drug), and saline, respectively. Treatment with NBE significantly reduced the elevated levels of urinary calcium, uric acid, phosphate, as well as increased urinary output. Accordingly, the increased calcium, oxalate levels and the number of calcium oxalate crystals deposits were remarkably reverted in the renal tissue of NBE-treated rats. In addition, NBE also prevented the impairment of renal function to decrease the contents of blood urea nitrogen (BUN) and creatinine. Taken together, these data suggest that NBE of UDH has a beneficial effect on calcium oxalate urinary stones in rats by flushing the stones out and protecting renal function.

Journal Article

Abstract  A toxicologic and dermatologic review of 2-methyl-4-phenyl-2-butanol when used as a fragrance ingredient is presented. 2-methyl-4-phenyl-2-butanol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a tertiary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for 2-methyl-4-phenyl-2-butanol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. assessment of aryl alkyl alcohols when used as fragrance ingredients.

Journal Article

Abstract  While engineering of new biofuels pathways into microbial hosts has received considerable attention, innovations in bioprocessing are required for commercialization of both conventional and next-generation fuels. For ethanol and butanol, reducing energy costs for product recovery remains a challenge. Fuels produced from heterologous aerobic pathways in yeast and bacteria require control of aeration and cooling at large scales. Converting lignocellulosic biomass to sugars for fuels production requires effective biomass pretreatment to increase surface area, decrystallize cellulose and facilitate enzymatic hydrolysis. Effective means to recover microalgae and extract their intracellular lipids remains a practical and economic bottleneck in algal biodiesel production.

Journal Article

Abstract  BACKGROUND: Butanol is a second generation biofuel produced by Clostridium acetobutylicum through acetone-butanol-ethanol (ABE) fermentation process. Shotgun proteomics provides a direct approach to study the whole proteome of an organism in depth. This paper focuses on shotgun proteomic profiling of C. acetobutylicum from ABE fermentation using glucose and xylose to understand the functional mechanisms of C. acetobutylicum proteins involved in butanol production.

RESULTS: We identified 894 different proteins in C. acetobutylicum from ABE fermentation process by two dimensional - liquid chromatography - tandem mass spectrometry (2D-LC-MS/MS) method. This includes 717 proteins from glucose and 826 proteins from the xylose substrate. A total of 649 proteins were found to be common and 22 significantly differentially expressed proteins were identified between glucose and xylose substrates.

CONCLUSION: Our results demonstrate that flagellar proteins are highly up-regulated with glucose compared to xylose substrate during ABE fermentation. Chemotactic activity was also found to be lost with the xylose substrate due to the absence of CheW and CheV proteins. This is the first report on the shotgun proteomic analysis of C. acetobutylicum ATCC 824 in ABE fermentation between glucose and xylose substrate from a single time data point and the number of proteins identified here is more than any other study performed on this organism up to this report.

Journal Article

Abstract  The Lewis (LEW) and Fischer 344 (F344) inbred rat strains are frequently used to study the role of genetic factors in vulnerability to drug addiction and relapse. Glutamate and γ-amino butyric acid (GABA) transmission are significantly altered after cocaine-induced reinstatement, although whether LEW and F344 rats differ in their accumbal glutamate and GABA responsiveness to cocaine-induced reinstatement remains unknown. To investigate this, we measured by in vivo microdialysis extracellular glutamate and GABA levels in the core division of the nucleus accumbens after extinction of cocaine self-administration and during cocaine-induced reinstatement (7.5 mg/kg, i.p.) in these two strains of rats. No strain differences were evident in cocaine self-administration or extinction behavior, although cocaine priming did induce a higher rate of lever pressing in LEW compared with F344 rats. After extinction, F344 rats that self-administered cocaine had less GABA than the saline controls, while the glutamate levels remained constant in both strains. There was more accumbal glutamate after cocaine priming in LEW rats that self-administered cocaine, while GABA levels were unaffected. By contrast, GABA increased transiently in F344 rats that self-administered cocaine, while glutamate levels were unaltered. In F344 saline controls, cocaine priming provoked contrasting effects in glutamate and GABA levels, inducing a delayed increase in glutamate and a delayed decrease in GABA levels. These amino acids were unaffected by cocaine priming in LEW saline rats. Together, these results suggest that genetic differences in cocaine-induced reinstatement reflect different responses of the accumbal GABA and glutamate systems to cocaine priming.

Journal Article

Abstract  We report the fabrication and characterization of polymer resistive switching memory devices fabricated from conjugated rod-coil poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine) diblock copolymers (PF-b-P2VP) and their hybrids with [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). PF(10)-b-P2VP(37) and PF(10)-b-P2VP(68)-based devices exhibited the volatile static random access memory (SRAM) characteristic with an ON/OFF current ratio up to 1 × 10(7), which was explained by the trapping/back transferring of charge carrier. PF(10)-b-P2VP(68) had a longer holding time in the ON state than PF(10)-b-P2VP(37) because of the delayed back transfer of trapping carriers originally from the longer P2VP blocks. The PCBM aggregated size in the composite thin films were effectively reduced by PF-b-P2VP compared to the homopolymer of PF or P2VP, because of the supramolecular charge transfer interaction, as evidenced by absorption and photoluminescence spectra. Their PCBM/PF-b-P2VP composite devices changed from the nonvolatile write-once-read-many-times (WORM) memory to the conductor behavior as the PCBM composition was increased. The electric-field induced charge transfer effect enabled the electrical bistable states for the applications in digital WORM memory device. The tunable memory characteristics through the block length ratio of block copolymers or PCBM composition provided the solution-processable charge storage nanomaterials for programmable high density memory device with a reducing bit cell size.

Journal Article

Abstract  The present study was planned to investigate sleep-prolonging effect of C. sativum. The hydro-alcoholic extract (HAE) and its three fractions namely water (WF), ethyl acetate (EAF) and N-butanol (NBF) were prepared from C. sativum aerial parts and administrated to mice. Also, the possible cytotoxicity of the extracts was tested using cultured PC12 cells. The HAE, EAF and NBF significantly prolonged sleep duration. Only the NBF could significantly decrease sleep latency. No decrease in the neuronal surviving was observed either by HAE or by its fractions. The present data indicate that C. sativum exert sleep-prolonging action without major neurotoxic effect.

  • <<
  • 1 of 201
  • >>
Filter Results