Hexabromocyclododecane (HBCD)

Project ID

1723

Category

IRIS

Added on

Oct. 20, 2011, 9:28 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Since 2000, a surprisingly high number of macroscopical gonad alterations has been reported in whitefish (Coregonus spp.) from Lake Thun, Switzerland. This unique phenomenon is still unexplained and has received much public attention. As one possible trigger for these effects, the presence of persistent, bioaccumulative and toxic compounds acting as endocrine disruptors in the lake has been discussed. In this study, concentrations of selected persistent organic pollutants were examined in two morphs of whitefish from Lake Thun and their link to the observed abnormalities was investigated. Analyzed compound classes included polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated naphthalenes, polybrominated diphenyl ethers and hexabromocyclododecanes. The target substances were identified in all samples and concentrations of the analyzed compounds were highly correlated among each other. These correlations show that the analyzed substances have the same distribution pattern throughout the lake and that uptake, accumulation and elimination processes are similar. Significant differences in contaminant levels within the samples existed between the two analyzed morphs of whitefish, most likely due to different age, food patterns and growth rate. No difference in contaminant levels was observed between fish with abnormal gonads and fish with normal gonads, suggesting no causal link between the investigated lipophilic organohalogen compounds present in fish and the observed gonad abnormalities in whitefish from Lake Thun. A comparison to existing data shows that concentrations in Lake Thun whitefish are at the lower bound of contaminant levels in whitefish from Swiss lakes or from European waters.

Journal Article

Abstract  The endocrine-disrupting activities of bisphenol A (BPA) and 19 related compounds were comparatively examined by means of different in vitro and in vivo reporter assays. BPA and some related compounds exhibited estrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Tetrachlorobisphenol A (TCBPA) showed the highest activity, followed by bisphenol B, BPA, and tetramethylbisphenol A (TMBPA); 2,2-bis(4-hydroxyphenyl)-1-propanol, 1,1-bis(4-hydroxyphenyl)propionic acid and 2,2-diphenylpropane showed little or no activity. Anti-estrogenic activity against 17beta-estradiol was observed with TMBPA and tetrabromobisphenol A (TBBPA). TCBPA, TBBPA, and BPA gave positive responses in the in vivo uterotrophic assay using ovariectomized mice. In contrast, BPA and some related compounds showed significant inhibitory effects on the androgenic activity of 5alpha-dihydrotestosterone in mouse fibroblast cell line NIH3T3. TMBPA showed the highest antagonistic activity, followed by bisphenol AF, bisphenol AD, bisphenol B, and BPA. However, TBBPA, TCBPA, and 2,2-diphenylpropane were inactive. TBBPA, TCBPA, TMBPA, and 3,3'-dimethylbisphenol A exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and other derivatives did not show such activity. The results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Journal Article

Abstract  The critical role of thyroid hormone (TH) in brain development is well-established. Evidence shows that severe deficiencies lead to significant neurological dysfunction. Much less information is available on more modest perturbations of TH on brain function. The present study induced varying degrees of developmental hypothyroidism by administration of low doses of the TH synthesis inhibitor, propylthiouracil (PTU 0, 1, 2, and 3 ppm) to the drinking water of pregnant rats. This regimen produced dose-dependent reductions in circulating levels of T4 in dams and offspring on postnatal days (PN) 15 and 22, with return to control levels in adulthood upon termination of treatment at weaning. Modest reductions in T3 were observed in the high-dose group on PN15. Synaptic function in the dentate gyrus was examined in adult euthyroid offspring using in vivo field potentials. Excitatory synaptic transmission (excitatory postsynaptic potential [EPSP] slope amplitude) was significantly reduced at 2 and 3 ppm PTU, with no statistically reliable effect detected in the population spike. Paired-pulse functions estimating the integrity of inhibitory synaptic processing were modestly reduced by 3 ppm PTU. Long-term potentiation (LTP) of the EPSP slope was impaired at all dose levels. Trace fear conditioning to context and to cue was impaired at the highest dose level when a distractor stimulus was present, whereas conditioning in a standard trace fear paradigm paradoxically revealed "enhanced" performance at the intermediate dose and a return to control values in the high-dose group. Biphasic dose-response profiles were evident in some measures (trace fear conditioning and LTP) but not others and serve to exemplify the complexity of the role of TH in brain development and its consequences for brain function.

Journal Article

Abstract  Hexabromocyclododecane (HBCD) and polybrominated diphenyl ethers (PBDEs) are additive flame retardants used in a wide range of consumer products. Both compounds have been detected in free-living avian species, but toxicological and molecular end points of exposure are limited. An in vitro approach was used to compare concentration-dependent effects of HBCD and the commercial penta-brominated diphenyl ether mixture DE-71 on cytotoxicity and mRNA expression in cultured hepatocytes derived from embryonic chickens. Neither HBCD-alpha, HBCD-technical mixture (TM), nor DE-71 effected hepatocyte viability at the highest concentrations assessed (30-100 microM). Real-time RT-PCR assays were developed to quantify changes in mRNA abundance of genes associated with chicken xenobiotic-sensing orphan nuclear receptor activation, the thyroid hormone (TH) pathway, and lipid regulation. Exposure to >or= 1 microM HBCD-alpha and HBCD-TM resulted in significant upregulation of cytochrome P450 (CYP) 2H1 (fourfold to sevenfold) and CYP3A37 (5- to 30-fold) at 24 and 36 h. In contrast, 30 microM DE-71 caused a twofold increase of CYP2H1 only. UGT1A9 expression was only upregulated by HBCD-alpha to a maximum of fourfold at >or= 1 microM. Transthyretin, thyroid hormone-responsive spot 14-alpha, and liver fatty acid-binding protein were all significantly downregulated (up to sevenfold) for cells exposed to >or= 1 microM HBCD-alpha and HBCD-TM. DE-71 also downregulated these three target genes twofold to fivefold at concentrations >or= 3 microM. Taken together, our results indicate that xenobiotic-metabolizing enzymes and genes associated with the TH pathway and lipid regulation are vulnerable to HBCD and DE-71 administration in cultured avian hepatocytes and might be useful molecular markers of exposure.

Journal Article

Abstract  Adipose tissue was sampled from the western Hudson Bay (WHB) subpopulation of polar bears at intervals from 1991 to 2007 to examine temporal trends of PCB and OCP levels both on an individual and sum-(∑-)contaminant basis. We also determined levels and temporal trends of emerging polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), polybrominated biphenyls (PBBs) and other current-use brominated flame retardants. Over the 17-year period, ∑DDT (and p,p'-DDE, p,p'-DDD, p,p'-DDT) decreased (-8.4%/year); α-hexachlorocyclohexane (α-HCH) decreased (-11%/year); β-HCH increased (+8.3%/year); and ∑PCB and ∑chlordane (CHL), both contaminants at highest concentrations in all years (>1ppm), showed no distinct trends even when compared to previous data for this subpopulation dating back to 1968. Some of the less persistent PCB congeners decreased significantly (-1.6%/year to -6.3%/year), whereas CB153 levels tended to increase (+3.3%/year). Parent CHLs (c-nonachlor, t-nonachlor) declined, whereas non-monotonic trends were detected for metabolites (heptachlor epoxide, oxychlordane). ∑chlorobenzene, octachlorostyrene, ∑mirex, ∑MeSO(2)-PCB and dieldrin did not significantly change. Increasing ∑PBDE levels (+13%/year) matched increases in the four consistently detected congeners, BDE47, BDE99, BDE100 and BDE153. Although no trend was observed, total-(α)-HBCD was only detected post-2000. Levels of the highest concentration brominated contaminant, BB153, showed no temporal change. As long-term ecosystem changes affecting contaminant levels may also affect contaminant patterns, we examined the influence of year (i.e., aging or "weathering" of the contaminant pattern), dietary tracers (carbon stable isotope ratios, fatty acid patterns) and biological (age/sex) group on congener/metabolite profiles. Patterns of PCBs, CHLs and PBDEs were correlated with dietary tracers and biological group, but only PCB and CHL patterns were correlated with year. DDT patterns were not associated with any explanatory variables, possibly related to local DDT sources. Contaminant pattern trends may be useful in distinguishing the possible role of ecological/diet changes on contaminant burdens from expected dynamics due to atmospheric sources and weathering.

Journal Article

Abstract  Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecanes (HBCDs), and tetrabromobiphenol-A (TBBP-A) were measured in a preliminary study of dust from passenger cabins and trunks of 14 UK cars. Concentrations in cabin dust of HBCDs, TBBP-A, and BDEs 47, 85, 99, 100, 153, 154, 183, 196, 197, 202, 203, 206, 207, 208, and 209 exceeded significantly (p<0.05) those in trunk dust. Sampling cabin dust thus appears to provide a more accurate indicator of human exposure via car dust ingestion than trunk dust. Elevated cabin concentrations are consistent with greater in-cabin use of BFRs. In five cars, while no significant differences (p>0.05) in concentrations of HBCDs and most PBDEs were detected in dust sampled from four different seating areas; concentrations of TBBP-A and of PBDEs 154, 206, 207, 208, and 209 were significantly higher (p<0.05) in dust sampled in the front seats. Possible photodebromination of BDE-209 was indicated by significantly higher (p<0.05) concentrations of BDE-202 in cabin dust. In-vehicle exposure via dust ingestion to PBDEs, HBCDs and TBBP-A exceeded that via inhalation. Comparison with overall exposure via diet, dust ingestion, and inhalation shows while in-vehicle exposure is a minor contributor to overall exposure to BDE-99, ΣHBCDs, and TBBP-A, it is a significant pathway for BDE-209.

Journal Article

Abstract  Several classes of brominated flame retardants (BFRs), namely polybrominated biphenyls (PBBs), polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol A (TBBPA), hexabromocyclododecane (HBCCD), bis(2,4,6-tribromophenoxy)ethane (BTBPE), and tris(2,3-dibromopropyl)phosphate (Tris), have been identified as environmental contaminants. PBDEs, TBBPA, and HBCCD are of particular concern due to increasing environmental concentrations and their ubiquitous presence in the tissues of humans and wildlife from Europe, Japan, and North America. Regardless, the toxicokinetics, in particular metabolism, of BFRs has received little attention. The present review summarizes the current state of knowledge of BFR metabolism, which is an important factor in determining the bioaccumulation, fate, toxicokinetics, and potential toxicity of BFRs in exposed organisms. Of the minimal metabolism research done, BFRs have been shown to be susceptible to several metabolic processes including oxidative debromination, reductive debromination, oxidative CYP enzyme-mediated biotransformation, and/or Phase II conjugation (glucuronidation and sulfation).However, substantially more research on metabolism is necessary to fully assess BFR fate, uptake and elimination kinetics, metabolic pathways, inter-species differences, the influence of congener structure, and the potential health risks to exposed organisms.

Journal Article

Abstract  Average concentrations of polybrominated diphenyl ethers (PBDEs) in dust in 30 homes, 18 offices, and 20 cars were 260,000, 31,000, and 340,000 ng SigmaPBDEs g(-1) respectively. Concentrations of BDEs 47, 99, 100, and 154 in cars exceeded significantly (p<0.05) those in homes and offices. Average concentrations of 1,2-bis(2,4,6-tribromophenoxy)ethane (TBE) and decabromodiphenyl ethane (DBDPE) in homes, offices, and cars respectively were lower at 120, 7.2, and 7.7 ng g(-1) (TBE) and 270, 170, and 400 ng g(-1) (DBDPE). BDE-209 concentrations in three samples are the highest to date at 2,600,000 (car), 2,200,000 (home), and 1,400,000 ng g(-1) (home). UK toddlers daily consuming 200 mg dust contaminated at the 95th percentile concentration, ingest 180 ng (Sigma)tri-hexa-BDEs and 310 microg BDE-209 day(-1). For TBE, exposure was lower than for PBDEs and hexabromocyclododecanes (HBCDs), while that for DBDPE was similar in magnitude to (Sigma)tri-hexa-BDEs, but less than for BDE-209 and HBCDs. BDE-209 concentrations recorded in ten samples taken at monthly intervals in one room varied 400-fold, implying caution when using single measurements of dust contamination for exposure assessment. Significant negative correlation was observed in one room between concentrations of BDE-47, 99, and 153 and dust loading (g dust m(-2) floor), suggesting "dilution" occurs at higher dust loadings.

Journal Article

Abstract  We studied the presence of hydroxylated metabolites of hexabromocyclododecane (HBCD) in three wildlife species (tern egg, seal, and flounder) and in Wistar rats exposed to 30 and 100 mg HBCD/kg bw/day for 28 days. A nondestructive extraction, fractionation, and cleanup method was developed to separate the hydroxylated HBCD metabolites from the biotic sample matrix. Four different groups of hydroxylated HBCD metabolites were identified in rat adipose, liver, lung, and muscle tissues by liquid and gas chromatography (LC and GC) combined with mass spectrometry (MS): monohydroxy metabolites of HBCD, pentabromocyclododecene (PBCDe), tetrabromocyclododecene (TBCDe), and dihydroxy-HBCD. Dihydroxy-PBCDe was identified by GC-MS but could not be confirmed by LCMS. Debromination of HBCD to PBCDe was another metabolic pathway observed. In tern eggs from the Western Scheldt the monohydroxy-HBCD was found and in the blubber of harbor seal (Wadden Sea) the monohydroxy metabolites of HBCD and PBCDe were found. No hydroxylated metabolites were detected in the tissue of flounder (Wadden Sea). To our knowledge, this is the first study to identify different hydroxylated metabolite groups of HBCD in rat and wildlife samples.

Journal Article

Abstract  Brominated flame retardants are a novel group of global environmental contaminants. Within this group the polybrominated diphenyl ethers (PBDE) constitute one class of many that are found in electrical appliances, building materials, and textiles. PBDEs are persistent compounds that appear to have an environmental dispersion similar to that of polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT). Levels of PBDEs are increasing in mother's milk while other organohalogens have decreased in concentration. We studied for developmental neurotoxic effects two polybrominated diphenyl ethers, 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) and 2,2',4,4',5-pentabromodiphenyl ether (PBDE 99)--congeners that dominate in environmental and human samples--together with another frequently used brominated flame retardant, tetrabromo-bis-phenol-A (TBBPA). The compounds were given to 10-day-old NMRI male mice, as follows: PBDE 47, 0.7 mg (1.4 micromol), 10.5 mg (21.1 micromol)/kg body weight (bw); PBDE 99, 0.8 mg (1.4 micromol), 12.0 mg (21.1 micromol)/kg bw; TBBPA, 0.75 mg (1.4 micromol), 11.5 mg (21.1 micromol)/kg bw. Mice serving as controls received 10 mL/kg bw of the 20% fat emulsion vehicle in the same manner. The present study has shown that neonatal exposure to PBDE 99 and PBDE 47 can cause permanent aberrations in spontaneous behavior, evident in 2- and 4-month-old animals. This effect together with the habituation capability was more pronounced with increasing age, and the changes were dose-response related. Furthermore, neonatal exposure to PBDE 99 also affected learning and memory functions in adult animals. These are developmental defects that have been detected previously in connection with PCBs.

Journal Article

Abstract  Environmental and human exposures to brominated flame retardants (BFR) have been of emerging concern since some BFR are persistent and bioaccumulative compounds. Among those, polybrominated diphenyl ethers (PBDE) have frequently been reported in low to high ng/g concentrations in human blood around the world while hexabromocyclododecane (HBCDD) only occasionally has been reported and then in the low ppb concentrations in human blood. The present study concerns PBDE congener and HBCDD concentrations in human milk from Stockholm from 1980 to 2004. HBCDD concentrations has increased four to five times since 1980 until 2002 but seems to have stabilized at this concentration in the last years (2003/04). Similarly, BDE-153 has continued to increase at least to 2001, after which it has stabilized in the mother's milk. Other PBDE congeners with four to five bromine substituents peaked 5 years earlier (1995) and are all decreasing. DecaBDE (BDE-209) is not a suitable biomarker for time trend studies according to the present results, showing no changes over time. This is likely due to its short apparent half-life in humans and poor transfer from blood to milk.

Journal Article

Abstract  A study was performed to assess exposure of the Belgian population to HBCD diastereoisomers. Measurements of HBCD were performed by UPLC-MS/MS, on 45 composite samples from 5 major food groups: dairy (products), meat (products), eggs, fish (products) and a group of "other" products. The medium bound estimated average daily intake (EDI) of ΣHBCD in the Belgian population was 0.99 ng kg(-1)bw d(-1). The diastereoisomer contribution to the mean EDI showed a predominance of γ-HBCD at 67%, followed by α-HBCD at 25% and 8% for β-HBCD. These results are consistent with the pattern found in the two food groups contributing the most to the EDI: meat (products) and the group of "other" products. Anyway, it has to be noted that diastereomeric distribution of HBCD can change due to bioisomerisation in biological material. Levels of HBCD diastereoisomers found in Belgian food samples of animal origin were low in comparison with those found in other EU countries and the resulting EDI was substantially below the proposed thresholds.

Journal Article

Abstract  Hexabromocyclododecanes (HBCDs) are high production volume chemicals (16700 t worldwide in 2001) used as flame-retardants for plastics and textiles. HBCDs exhibit typical properties of persistent organic pollutants (POPs). They are highly lipophilic and accumulate in biota. Increasing environmental concentrations of HBCDs, mostly reported as sum values, have been observed. As such, HBCDs have to be considered as potential emerging POPs, but their occurrence and environmental fate have not yet been addressed at the level of individual HBCD stereoisomers. Considering the six stereogenic centers of HBCDs, 16 stereoisomers, six diastereomeric pairs of enantiomers as well as four meso forms, can be deduced. Herein, we report spectroscopic and chromatographic data for eight out of 16 possible HBCD stereoisomers, which were isolated from a technical product. Six stereoisomers were identified as three pairs of enantiomers ((+/-) alpha-, beta-, and gamma-HBCDs), differing in optical rotation and chromatographic retention on a chiral phase. The crystal structures of these pairs of enantiomers were determined. Another two of these eight HBCD stereoisomers, not yet described in the literature, showed no optical rotation and are tentatively assigned as meso forms (delta- and epsilon-HBCD). The given spectroscopic and chromatographic information allows the unambiguous identification of eight HBCD stereoisomers and the occurrence, fate, and toxicology of these individual stereoisomers can now be studied.

Journal Article

Abstract  Hexabromocyclododecanes (HBCDs) are high production volume chemicals used as flame retardants for plastics and textiles. They are currently produced in quantities exceeding 20,000 t/y. Despite this fact, the correct stereochemistry of most HBCDs is still not known. Six stereocenters are formed during bromination of cyclododecatrienes, resulting in mixtures of different stereoisomers. Considering all elements of symmetry, 16 different stereoisomers including six pairs of enantiomers as well as 4 meso forms are possible theoretically. Recently, we isolated 8 of the 16 possible stereoisomers from a technical HBCD mixture and assigned their relative configurations. Herein, we report on the isolation of 6 enantiomerically pure alpha-, beta-, and gamma-HBCDs, obtained from preparative chiral-phase liquid chromatography, and we present their absolute configurations, which were determined from X-ray diffraction analysis. The absolute configuration of (-) alpha-HBCD was found to be (1R,2R,5S,6R,9R,10S), while the one of (+) beta-HBCD is assigned to (1S,2S,5S,6R,9S,10R), whereas the one of (-) gamma-HBCD corresponds to (1S,2S,5S,6R,9R,10S). The given structural information allows the unambiguous identification of the six most important HBCD stereoisomers, which typically account for more than 95% of technical HBCDs. In addition, we compared the solid-state conformations of racemic and enantiomerically pure alpha-, beta-, and gamma-HBCDs. In all cases, vicinal dibromides adopted a synclinal (sc) conformation with torsion angles of 69+/-6 degrees. A unique structural motive was common to all examined HBCD solid-state conformations. This conserved structure was described as an extended triple turn consisting of an arrangement of three pairs of synclinal and two antiperiplanar torsion angles.

Journal Article

Abstract  In the present study we have examined the effects of brominated flame retardants (BFR) and several other environmental contaminants in two in vitro assays for intragenic recombination at an endogenous locus in mammalian cells. A total ten compounds were investigated, i. e., two technical PCB mixtures (Aroclor 1221 and Aroclor 1254), DDT, PCP, tetrabromobisphenol A (TBBPA), 4,4'-bischlorophenyl sulfone (BCPS), hexabromocyclododecane (HBCD) and the three different polybrominated diphenylethers (PBDEs): 2-bromodiphenylether (MBDE), 3,4-dibromodiphenylether (DBDE) and 2,4,2', 4'-tetrabromodiphenylether (TBDE). In the SPD8 assay system statistically significant increases in recombination frequency were observed with Aroclor 1221, BCPS, DBDE, DDT, HBCD, MBDE and TBDE. In the Sp5 assay system, only DBDE, HBCD and MBDE caused statistically significant increases in recombination frequency. In conclusion, our findings indicate that the modern additives to plastic, i.e., HBCD and PBDEs, as well as the plastic monomer BCPS may have the same effect to human health as DDT and PCBs, in terms of inducing genetic recombination, which is known to provoke a number of diseases, including cancer.

Journal Article

Abstract  Hexabromocyclododecane (HBCD) is a widely used brominated flame retardant which has been recently detected in many environmental matrices. Data from a subacute toxicity study indicated dose-related effects particularly on the pituitary thyroid-axis and retinoids in female rats. Brominated and chlorinated aromatic hydrocarbons are also reported to exert effects on the nervous system. Several investigations revealed a pronounced sensitivity of the dopaminergic system and auditory functions to polychlorinated biphenyls. Therefore, the present experiment should examine, whether or not HBCD affects these targets. Rats were exposed to 0, 0.1, 0.3, 1, 3, 10, 30 or 100 mg HBCD/kg body weight via the diet. Exposure started before mating and was continued during mating, gestation, lactation, and after weaning in offspring. Haloperidol-induced catalepsy and brainstem auditory evoked potentials (BAEPs) were used to assess dopamine-dependent behavior and hearing function in adult male and female offspring. On the catalepsy test, reduced latencies to movement onset were observed mainly in female offspring, indicating influences on dopamine-dependent behavior. The overall pattern of BAEP alterations, with increased thresholds and prolonged latencies of early waves, suggested a predominant cochlear effect. Effects were dose-dependent with lower bounds of benchmark doses (BMDL) between < or =1 and 10 mg/kg body weight for both catalepsy and BAEP thresholds. Tissue concentrations at the BMDL values obtained in this study were 3-4 orders of magnitude higher than current exposure levels in humans.

Journal Article

Abstract  Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) is a chlorinated phenolic antibacterial compound found in consumer products. In vitro human pregnane X receptor activation, hepatic phase I enzyme induction, and decreased in vivo total thyroxine (T4) suggest adverse effects on thyroid hormone homeostasis. Current research tested the hypothesis that triclosan decreases circulating T4 via upregulation of hepatic catabolism and transport. Weanling female Long-Evans rats received triclosan (0-1000 mg/kg/day) by gavage for 4 days. Whole blood and liver were collected 24 h later. Total serum T4, triiodothyronine (T3), and thyroid-stimulating hormone (TSH) were measured by radioimmunoassay. Hepatic microsomal assays measured ethoxyresorufin-O-deethylase, pentoxyresorufin-O-deethylase (PROD), and uridine diphosphate glucuronyltransferase enzyme activities. The messenger RNA (mRNA) expression of cytochrome P450s 1a1, 2b1/2, and 3a1/23; UGTs 1a1, 1a6, and 2b5; sulfotransferases 1c1 and 1b1; and hepatic transporters Oatp1a1, Oatp1a4, Mrp2, and Mdr1b was measured by quantitative reverse transcriptase PCR. Total T4 decreased dose responsively, down to 43% of control at 1000 mg/kg/day. Total T3 was decreased to 89 and 75% of control at 300 and 1000 mg/kg/day. TSH did not change. Triclosan dose dependently increased PROD activity up to 900% of control at 1000 mg/kg/day. T4 glucuronidation increased nearly twofold at 1000 mg/kg/day. Cyp2b1/2 and Cyp3a1/23 mRNA expression levels were induced twofold and fourfold at 300 mg/kg/day. Ugt1a1 and Sult1c1 mRNA expression levels increased 2.2-fold and 2.6-fold at 300 mg/kg/day. Transporter mRNA expression levels were unchanged. These data denote important key events in the mode of action for triclosan-induced hypothyroxinemia in rats and suggest that this effect may be partially due to upregulation of hepatic catabolism but not due to mRNA expression changes in the tested hepatic transporters.

Journal Article

Abstract  Hexabromocyclododecane (HBCD) is a mixture of three stereoisomers alpha (α), beta (β), and gamma (γ). γ-HBCD dominates the mixture (∼70%), and despite α-HBCD's minor contribution to global HBCD production and usage (∼10%), it is the dominant congener found in most biotic samples worldwide. Evidence of toxicity and lack of stereoisomer studies drives the importance of understanding HBCD toxicokinetics in potentially susceptible populations. The majority of public health concern has focused on hazardous effects resulting from exposure of infants and young children to HBCD due to reports on adverse developmental effects in rodent studies, in combination with human exposure estimates suggesting that nursing infants and young children have the highest exposure to HBCD. This study was designed to investigate differences in the disposition of both γ-HBCD and α-HBCD in infantile mice reported to be susceptible to the HBCD commercial mixture. The tissue distribution of α-[(14)C]HBCD- and γ-[(14)C]HBCD-derived radioactivity was monitored in C57BL/6 mice following a single oral dose of either compound (3 mg/kg) after direct gavage at postnatal day 10. Mice were held up to 7 days in shoebox cages after which pups were sacrificed, tissue collected, and internal dosimetry was measured. Developing mice exposed to α-HBCD had an overall higher body burden than γ-HBCD at every time point measured; at 4 days postexposure, they retained 22% of the α-HBCD administered dose, whereas pups exposed to γ-HBCD retained 10%. Total body burden in infantile mice after exposure to γ-HBCD was increased 10-fold as compared with adults. Similarly, after exposure to α-HBCD, infantile mice contained 2.5-fold higher levels than adult. These differences lead to higher concentrations of the HBCD diastereomers at target tissues during critical windows of development. The results indicate that the toxicokinetics of the two HBCD diastereomers differ between developing and adult mice; whereas distribution patterns are similar, concentrations of each HBCD diastereomer's-derived radioactivity are higher in the pup's liver, fat, kidney, brain, blood, muscle, and lungs than in the adult's. This study suggests that developmental stage may be a risk factor for the harmful effects of α-HBCD and γ-HBCD, when developing animals may be more sensitive to effects and have increased body burden.

Technical Report
Journal Article

Abstract  Bromine has been added to cis,trans,trans-1,5,9-cyclododecatriene under various reaction conditions. All expected direct addition products have been isolated, and their structures have been determined by microanalysis, NMR and X-ray crystallography. Advanced NMR techniques were used to determine solution conformations of several of the compounds, enabling comparison with the solid-state conformations obtained by crystallography.

Journal Article

Abstract  BACKGROUND: Flame retardant chemicals are used in materials on airplanes to slow the propagation of fire. These chemicals migrate from their source products and can be found in the dust of airplanes, creating the potential for exposure.

METHODS: To characterize exposure to flame retardant chemicals in airplane dust, we collected dust samples from locations inside 19 commercial airplanes parked overnight at airport gates. In addition, hand-wipe samples were also collected from 9 flight attendants and 1 passenger who had just taken a cross-country (USA) flight. The samples were analyzed for a suite of flame retardant chemicals. To identify the possible sources for the brominated flame retardants, we used a portable XRF analyzer to quantify bromine concentrations in materials inside the airplanes.

RESULTS: A wide range of flame retardant compounds were detected in 100% of the dust samples collected from airplanes, including BDEs 47, 99, 153, 183 and 209, tris(1,3-dichloro-isopropyl)phosphate (TDCPP), hexabromocyclododecane (HBCD) and bis-(2-ethylhexyl)-tetrabromo-phthalate (TBPH). Airplane dust contained elevated concentrations of BDE 209 (GM: 500 ug/g; range: 2,600 ug/g) relative to other indoor environments, such as residential and commercial buildings, and the hands of participants after a cross-country flight contained elevated BDE 209 concentrations relative to the general population. TDCPP, a known carcinogen that was removed from use in children's pajamas in the 1970's although still used today in other consumer products, was detected on 100% of airplanes in concentrations similar to those found in residential and commercial locations.

CONCLUSION: This study adds to the limited body of knowledge regarding exposure to flame retardants on commercial aircraft, an environment long hypothesized to be at risk for maximum exposures due to strict flame retardant standards for aircraft materials. Our findings indicate that flame retardants are widely used in many airplane components and all airplane types, as expected. Most flame retardants, including TDCPP, were detected in 100% of dust samples collected from the airplanes. The concentrations of BDE 209 were elevated by orders of magnitude relative to residential and office environments.

  • <<
  • 2 of 48
  • >>
Filter Results