Trimethylbenzenes (Interagency Science Discussion Draft)

Project ID

2375

Category

IRIS

Added on

June 29, 2015, 10:57 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Prompted by the continued prevalence of hearing related disabilities accepted as eligible for compensation and treatment under Australian Department of Veterans' Affairs legislation, a review of recent literature regarding possible causation mechanisms and thus, possible prevention strategies, is timely. The emerging thoughts on the effects of a combination of jet fuel and noise exposure on the central auditory nervous system (CANS) have relevance in the military aviation context because of the high exposures to solvents (including fuels) and unique noise hazards related to weapons systems and military aircraft. This literature review aimed to identify and analyze the current knowledge base of the effects of combined exposure to JP-8 jet fuel (or its aromatic solvent components) and noise on the CANS in human populations. We reviewed articles examining electrophysiological and behavioral measurement of the CANS following combined exposures to jet fuel (or its aromatic constituents) and noise. A total of 6 articles met the inclusion criteria for the review and their results are summarized. The articles considered in this review indicate that assessment of the CANS should be undertaken as part of a comprehensive test battery for military members exposed to both noise and solvents in the workplace.

Journal Article

Abstract  Enhancing the quality of beef meat is an important goal in terms of improving both the nutritional value for the consumer and the commercial value for producers. The aim of this work was to study the effects of different vegetable oil supplements on growth performance, carcass quality and meat quality in beef steers reared under intensive conditions. A total of 240 Blonde D' Aquitaine steers (average BW=293.7±38.88 kg) were grouped into 24 batches (10 steers/batch) and were randomly assigned to one of the three dietary treatments (eight batches per treatment), each supplemented with either 4% hydrogenated palm oil (PALM) or fatty acids (FAs) from olive oil (OLI) or soybean oil (SOY). No differences in growth performance or carcass quality were observed. For the meat quality analysis, a steer was randomly selected from each batch and the 6th rib on the left half of the carcass was dissected. PALM meat had the highest percentage of 16:0 (P<0.05) and the lowest n-6/n-3 polyunsaturated fatty acids (PUFA) ratio (P<0.05), OLI had the highest content of t11-18:1 (P<0.01) and c9,t11-18:2 (P<0.05) and SOY showed the lowest value of monounsaturated fatty acids (MUFA) (P<0.001), the highest percentage of PUFA (P<0.01) and a lower index of atherogenicity (P=0.07) than PALM. No significant differences in the sensory characteristics of the meat were noted. However, the results of the principal component analysis of meat characteristics enabled meat from those steers that consumed fatty acids from olive oil to be differentiated from that of steers that consumed soybean oil.

Journal Article

Abstract  Number of seeds per silique (NSS) is an important determinant of seed yield potential in Brassicaceae crops and is controlled by naturally occurring quantitative trait loci (QTLs). We previously mapped a major QTL, qSS.C9, on the C9 chromosome that controls NSS in rapeseed (Brassica napus L.). To gain a better understanding of how qSS.C9 controls NSS in rapeseed, we isolated this locus through a map-based cloning strategy. qSS.C9 encodes a predicted small protein with 119 amino acids, designated as BnaC9.SMG7b, that shows homology with the Ever Shorter Telomere 1-tertratricopeptide repeats (EST-TPR) and EST-central domains (CD) of Arabidopsis SUPPRESSOR WITH MORPHOGENETIC EFFECTS ON GENITALIA7 (SMG7). BnaC9.SMG7b plays a role in regulating the formation of functional female gametophyte, thus determining the formation of functional megaspores and then mature ovules. Natural loss or artificial knockdown of BnaC9.SMG7b significantly reduces the number of functional ovules per silique and thus results in decreased seed number, indicating that qSS.C9 is a positive regulator of NSS in B. napus. Sequence and function analyses show that BnaC9.SMG7b experiences a subfunctionalization process that causes loss of function in nonsense-mediated mRNA decay (NMD), as in Arabidopsis SMG7. Haplotype analysis in 84 accessions showed that the favorable BnaC9.SMG7b alleles are prevalent in modern B. napus germplasms, suggesting that this locus has been a major selection target of B. napus improvement. Our results represent the first step toward unraveling the molecular mechanism that controls the natural variation of NSS in rapeseed.

Journal Article

Abstract  Some of NOD-like receptors (NLRs), the cytosolic pattern recognition receptors form a multi-protein complex, inflammasome consisting of one or more NLRs, the adaptor protein ASC and inflammatory caspase to generate mature inflammatory cytokines, interleukin (IL)-1β and IL-18. However, inflammasome-mediated inflammatory cascade involving any NLR member is unknown in a lower vertebrate like fish. Also, inflammatory cytokine induction pathway in response to a specific ligand, namely bacterial lipopolysaccharide (LPS) has not yet been clarified. Therefore, 13 predicted NLR sequences of the Japanese pufferfish, Fugu (Takifugu rubripes) were retrieved in silico and categorized as NLR-C1∼13. Expression analysis of these genes in Fugu head kidney (HK) cells stimulated with a heat-killed Lactobacillus paracasei spp. paracasei (Lpp), LPS, nigericin and a combination of nigericin + LPS showed consistent up-regulations of NLR-C1, 5, 7, 10 and 12 genes in both Lpp and LPS stimulations and NLR-C9 gene in LPS stimulation only. However, nigericin and nigericin + LPS caused an increased expression of NLR-C10 and 12 in HK cells and leukocytes. Fugu treated with Lpp and LPS (in vivo), and infected with Vibrio harveyi had an elevated expression of NLR-C10 and 12. Increased transcription of caspase-1, ASC, IL-1β and IL-18 was recorded in nigericin-stimulated HK cells and leukocytes. Results suggested activation of probable inflammasome-mediated inflammatory cytokine response in Fugu. Moreover, LPS may be a key ligand that induces some of the Fugu NLR-Cs (NLR-C9, 10 and 12). Further characterization and functional analysis of Fugu NLR-C10 and 12 for ligand sensing, and processing of pro-inflammatory cytokine, IL-1β would elucidate the inflammasome evolution in fish.

Journal Article

Abstract  Density functional theory (DFT) calculations are performed on the active site of biotin synthase (BS) to investigate the sulfur transfer from the Fe2S2 cluster to dethiobiotin (DTB). The active site is modeled to include both the 1st and 2nd sphere residues. Molecular orbital theory considerations and calculation on smaller models indicate that only an S atom (not S(2-)) transfer from an oxidized Fe2S2 cluster leads to the formation of biotin from the DTB using two adenosyl radicals generated from S-adenosyl-L-methionine. The calculations on larger protein active site model indicate that a 9-monothiobiotin bound reduced cluster should be an intermediate during the S atom insertion from the Fe2S2 cluster consistent with experimental data. The Arg260 bound to Fe1, being a weaker donor than cysteine bound to Fe2, determines the geometry and the electronic structure of this intermediate. The formation of this intermediate containing the C9-S bond is estimated to have a ΔG(≠) of 17.1 kcal/mol while its decay by the formation of the 2nd C6-S bond is calculated to have a ΔG(≠) of 29.8 kcal/mol, i.e. the 2nd C-S bond formation is calculated to be the rate determining step in the cycle and it leads to the decay of the Fe2S2 cluster. Significant configuration interaction (CI), present in these transition states, helps lower the barrier of these reactions by ~30-25 kcal/mol relative to a hypothetical outer-sphere reaction. The conserved Phe285 residue near the Fe2S2 active site determines the stereo selectivity at the C6 center of this radical coupling reaction. Reaction mechanism of BS investigated using DFT calculations. Strong CI and the Phe285 residue control the kinetic rate and stereochemistry of the product.

Journal Article

Abstract  In a 2×2 factorial design, 12 Thai Native and 12 Holstein bulls were fed ad libitum a total mixed ration (20 : 80; roughage : concentrate) with whole cottonseed (WCS) or sunflower seed (SFS) as oilseed sources. The rations contained 7% crude fat and were fed for 90 days. Plasma was taken at three times during the experiment, and at slaughter the longissimus dorsi and subcutaneous fat were sampled for fatty acid analysis. Ration did not affect rumen fermentation parameters. The plasma fatty acid profile was not affected by ration. In subcutaneous fat, a ration×breed interaction for the saturated fatty acid (SFA) and c9t11 CLA proportions was observed, resulting from larger differences between the rations in Thai Native compared with Holstein bulls. The WCS ration resulted in higher proportions of SFA and lower proportions of monounsaturated fatty acids and c9,t11 CLA compared with the SFS ration (P<0.01). In the intramuscular fat, the WCS ration was also associated with a lower c9t11 CLA proportion (P<0.01) and higher SFA proportion (P<0.05). The intramuscular proportion of polyunsaturated acids was higher and the proportion of SFA was lower in Thai Native compared with Holstein bulls (P<0.05), irrespective of ration.

Journal Article

Abstract  Senegalese sole (Solea senegalensis) has been considered since the 1990's to be a promising flatfish species for diversifying European marine aquaculture. However, pathogen outbreaks leading to high mortality rates can impair Senegalese sole commercial production at the weaning phase. Different approaches have been shown to improve fish immunocompetence; with this in mind the objective of the work described herein was to determine whether increased levels of dietary vitamin A (VA) improve the immune response in early juveniles of Senegalese sole. For this purpose, Senegalese sole were reared and fed with Artemia metanauplii containing increased levels of VA (37,000; 44,666; 82,666 and 203,000 total VA IU Kg(-1)) from 6 to 60 days post-hatch (early juvenile stage). After an induced bacterial infection with a 50% lethal dose of Photobacterium damselae subsp. damselae, survival rate, as well as underlying gene expression of specific immune markers (C1inh, C3, C9, Lgals1, Hamp, LysC, Prdx1, Steap4 and Transf) were evaluated. Results showed that fish fed higher doses of dietary VA were more resistant to the bacterial challenge. The lower mortality was found to be related with differential expression of genes involved in the complement system and iron availability. We suggest that feeding metamorphosed Senegalese sole with 203,000 total VA IU Kg(-1) might be an effective, inexpensive and environmentally friendly method to improve Senegalese sole immunocompetence, thereby improving survival of juveniles and reducing economic losses.

Journal Article

Abstract  INTRODUCTION: Intracranial aneurysms (IAs) remain a devastating clinical challenge, and the pathogenesis of IA formation and progression continues to be unclear. Biomarker analysis can help us understand IA development. The authors performed a systematic review of current literature on genetic and serum biomarkers for IAs in an attempt to identify diagnostic/prognostic factors for ruptured and unruptured aneurysms.

METHODS: All relevant studies on PubMed that reported blood/cerebrospinal fluid (CSF) biomarkers and genes that regulate biomarker levels for IAs were assessed for whether the biomarkers/genes studied correlated with IA formation and rupture.

RESULTS: Thirty-three studies were reviewed. IAs are associated with an increase in levels of immunologic markers, particularly complement C3 and C9, immunoglobulins IgG and IgM, M1/M2 macrophages, monocytes, and B and T lymphocytes; increase in blood and CSF levels of adhesion molecules; selectins found on vascular endothelium, platelets, and leukocytes; doubled ratios of elastase-to-alpha-1-antitrypsin as controls; elevated levels of neurofilament heavy chain SM135 and S-100 post rupture; and locus 19q13 with many candidate genes.

CONCLUSION: Though the pathophysiology of the disease remains unclear, the current literature supports the role of inflammatory and cell adhesion molecules, enzymes and hormones that effect cerebral vasculature, and other cerebral proteins related to brain and vascular damage in both the formation and progression to rupture of IAs. Future investigations are needed to validate results from previous studies and identify new diagnostic/prognostic biomarkers of IAs.

Journal Article

Abstract  Background: Monitoring of early stages of freshness decay is a major issue for the fishery industry to guarantee the best quality for this highly perishable food matrix. Numerous techniques have been developed, but most of them have the disadvantage of being reliable only either in the last stages of fish freshness or for the analysis of whole fish. This study describes the development of a qPCR method targeting the torA gene harboured by fish spoilage microorganisms. torA encodes an enzyme that leads to the production of trimethylamine responsible for the characteristic spoiled-fish odour. Results: A degenerate primer pair was designed. It amplified torA gene of both Vibrio and Photobacterium with good efficiencies on 7-log DNA dilutions. The primer pair was used during a shelf-life monitoring study achieved on modified atmosphere packed, chilled, whiting (Merlangius merlangus) fillets. The qPCR approach allows the detection of an increase of torA copies throughout the storage of fillets in correlation with the evolution of both total volatile basic nitrogen (-0.86) and trimethylamine concentrations (-0.81), known as spoilage markers. Conclusion: This study described a very promising, sensitive, reliable, time-effective, technique in the field of freshness characterisation of processed fish.

Journal Article

Abstract  Recent intensive microbiological investigation of sulfidogenesis in soda lakes did not result in isolation of any pure cultures of sulfate-reducing bacteria (SRB) able to directly oxidize acetate. The sulfate-dependent acetate oxidation at haloalkaline conditions has, so far, been only shown in two syntrophic associations of novel Syntrophobacteraceae members and haloalkaliphilic hydrogenotrophic SRB. In the course of investigation of one of them, obtained from a hypersaline soda lake in South-Western Siberia, a minor component was observed showing a close relation to Desulfonatronobacter acidivorans--a "complete oxidizing" SRB from soda lakes. This organism became dominant in a secondary enrichment with propionate as e-donor and sulfate as e-acceptor. A pure culture, strain APT3, was identified as a novel member of the family Desulfobacteraceae. It is an extremely salt-tolerant alkaliphile, growing with butyrate at salinity up to 4 M total Na(+) with a pH optimum at 9.5. It can grow with sulfate as e-acceptor with C3-C9 VFA and also with some alcohols. The most interesting property of strain APT3 is its ability to grow with acetate as e-donor, although not with sulfate, but with sulfite or thiosulfate as e-acceptors. The new isolate is proposed as a new species Desulfonatronobacter acetoxydans.

Journal Article

Abstract  Amyloidosis is a disease characterized by the formation of extracellular amyloid deposits. Immunoglobulin light-chain amyloidosis can appear as a local disorder presenting with mild symptoms or as a life threatening systemic disease. The systemic form of immunoglobulin light-chain amyloidosis is the most common type of amyloidosis in western countries although it is a rare disease. Identification of the proteins forming amyloid fibrils is essential for the diagnosis of the disease and knowledge about the overall protein composition of the deposits may lead to a larger understanding of the deposition events thereby facilitating a more detailed picture of the molecular pathology. In this pilot study, we investigated the protein composition of amyloid deposits isolated from human specimens of the eyelid, conjunctiva, and orbit. Deposits and internal control tissue (patient tissue without apparent deposits) were procured by laser capture microdissection. Proteins in the captured amyloid and control samples were quantified by liquid chromatography tandem mass spectrometry using the label-free exponential modified Protein Abundance Index (emPAI) method. Immunoglobulin light chain kappa or lambda was found to be the most predominant protein in the amyloid deposits from the eyelid, conjunctiva, and orbit. Five proteins, apolipoprotein A-I, carboxypeptidase B2 (TAFI), complement component C9, fibulin-1 and plasminogen were found solely across all amyloid but not in the control tissue. In addition, the protein profiles identified apolipoprotein E and serum amyloid P component to be associated with the immunoglobulin light chain deposits across all three tissues analyzed. The method used in this study provided high sensitivity and specificity for the type of amyloid and may provide additional information on the pathology of the amyloid deposits in the ocular tissues studied.

Journal Article

Abstract  This study investigates perfluoroalkyl carboxylic acids (PFCAs) contamination of edible fish muscle from Japanese coastal waters. The concentrations of PFCAs with 8-14 carbon atoms (C8-C14) in Pacific cods in Hokkaido, Japan were 51 (median: pg/g-wet weight) for C8, 93 for C9, 99 for C10, 746 for C11, 416 for C12, 404 for C13, and 93 for C14. The levels of C9-C14 PFCAs in fish were strongly correlated to each other, but not to C8 and the other chlorinated persistent organic pollutants, indicating that C9-C14 PFCAs have a different emission source and/or bioaccumulation mechanism. The relative ratios between estimated PFCAs intake through fish consumption and the reported total dietary exposure of PFCAs were less than 1 for C8 to C9, but were more than 1 for C10 to C14. This result strongly suggests that fish consumption is a significant source of human dietary exposure to C10-C14 PFCAs.

Journal Article

Abstract  BACKGROUND: Conjugated linoleic acids (CLA) in general, and in particular the trans-10,cis-12 (t10,c12-CLA) isomer are potent modulators of milk fat synthesis in dairy cows. Studies in rodents, such as mice, have revealed that t10,c12-CLA is responsible for hepatic lipodystrophy and decreased adipose tissue with subsequent changes in the fatty acid distribution. The present study aimed to investigate the fatty acid distribution of lipids in several body tissues compared to their distribution in milk fat in early lactating cows in response to CLA treatment. Effects in mammary gland are further analyzed at gene expression level.

METHODS: Twenty-five Holstein heifers were fed a diet supplemented with (CLA groups) or without (CON groups) a rumen-protected CLA supplement that provided 6 g/d of c9,t11- and t10,c12-CLA. Five groups of randomly assigned cows were analyzed according to experimental design based on feeding and time of slaughter. Cows in the first group received no CLA supplement and were slaughtered one day postpartum (CON0). Milk samples were taken from the remaining cows in CON and CLA groups until slaughter at 42 (period 1) and 105 (period 2) days in milk (DIM). Immediately after slaughter, tissue samples from liver, retroperitoneal fat, mammary gland and M. longissimus (13th rib) were obtained and analyzed for fatty acid distribution. Relevant genes involved in lipid metabolism of the mammary gland were analyzed using a custom-made microarray platform.

RESULTS: Both supplemented CLA isomers increased significantly in milk fat. Furthermore, preformed fatty acids increased at the expense of de novo-synthesized fatty acids. Total and single trans-octadecenoic acids (e.g., t10-18:1 and t11-18:1) also significantly increased. Fatty acid distribution of the mammary gland showed similar changes to those in milk fat, due mainly to residual milk but without affecting gene expression. Liver fatty acids were not altered except for trans-octadecenoic acids, which were increased. Adipose tissue and M. longissimus were only marginally affected by CLA supplementation.

CONCLUSIONS: Daily supplementation with CLA led to typical alterations usually observed in milk fat depression (reduction of de novo-synthesized fatty acids) but only marginally affected tissue lipids. Gene expression of the mammary gland was not influenced by CLA supplementation.

Journal Article

Abstract  This article examines some of the ethical concerns relevant for the management of amyotrophic lateral sclerosis (ALS). We emphasize the importance for providing a competent assessment of the clinical deficit to correctly identify the disease and to avoid incorrect diagnoses. Conveying the diagnosis to the patient and their family requires empathy and it is important to remain supportive and positive, even in the face of this incurable disease. The essence of care in ALS is to permit the patient to have optimal function for their level of ability. This may require the use of gastrostomy and non-invasive or permanent ventilation. Employment of a multi-disciplinary team will permit optimization of patient care to achieve a good quality of life for as long as possible. The patient should also be informed of the risks associated with unproven therapies and the risks and potential benefits of therapeutic trials. The wishes of patients in regard to gastrostomy, long-term ventilation and end-of life decisions must be considered in an unbiased fashion. Recent advances in the genetics of familial ALS (FALS) have demonstrated some overlap between FALS, sporadic ALS and fronto-temporal lobar dementia (FTLD). The interpretation and dissemination of the results of genetic testing although important can induce confusion, considerable anxiety and guilt in patients and their families and proper counseling is imperative.

Journal Article

Abstract  On the basis of stereo specific information obtained from crystal structures of CDK2, indole and chromene analogues were designed by suitably substituting the pharmacophores on their moiety and docked with target protein for calculating binding affinities. The binding affinities are represented in glide score. (5E)-5-[(1-methyl-1H-indol-3-yl)methylidene]-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I1), (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide (I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were selected for synthesis and biological testing based on vital interactions. (5E)-5-(1H-indol-3-ylmethylidene)-2,4,6-trioxotetrahydro-2H-pyrimidin-1-ide(I2) and 2-amino-4-(4-methyl phenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile (C9) were proved to be active against MCF-7 and HeLa cell lines.

Journal Article

Abstract  PURPOSE: Total body irradiation (TBI) has been used for bone marrow transplant for hematologic and immune deficiency conditions. The goal of TBI is to deliver a homogeneous dose to the entire body, with a generally accepted range of dose uniformity being within ± 10% of the prescribed dose. The moving table technique for TBI could make dose uniform in whole body by adjusting couch speed. However, it is difficult to accurately estimate the actual dose by calculation and hence in vivo dosimetry (IVD) is routinely performed. Here, the authors present patterns of patient-specific IVD in 161 TBI patients treated at our institution.

METHODS: Cobalt-60 teletherapy unit (Model C9 Cobalt-60 teletherapy unit, Picker X-ray Corporation) with customized moving bed (SITI Industrial Products, Inc., Fishers, IN) were used for TBI treatment. During treatment, OneDose(TM) (Sicel Technology, NC) Metal Oxide-silicon Semiconductor Field Effect Transistor detectors were placed at patient body surface; both entrance and exit side of the beam at patient head, neck, mediastinum, umbilicus, and knee to estimate midplane dose. When large differences (>10%) between the prescribed and measured dose were observed, dose delivery was corrected for subsequent fractions by the adjustment of couch speed and/or bolus placement. Under IRB exempt status, the authors retrospectively analyzed the treatment records of 161 patients who received TBI treatment between 2006 and 2011.

RESULTS: Across the entire cohort, the median ± SD (range) percent variance between calculated and measured dose for head, neck, mediastinum, umbilicus, and knee was -2.3 ± 10.2% (-66.2 to +35.3), 1.1 ± 11.5% (-62.2 to +40.3), -1.9 ± 9.5% (-66.4 to +46.6), -1.1 ± 7.2% (-35.2 to +42.9), and 3.4 ± 12.2% (-47.9 to +108.5), respectively. More than half of treatments were within ± 10% of the prescribed dose for all anatomical regions. For 80% of treatments (10%-90%), dose at the umbilicus was within ± 10%. However, some large differences greater than 35% were also found at several points. For one case, the knee received double the prescribed dose. When the dose differences for multiple fractions were averaged, compliance (± 1 0%) between the prescription and measured dose was improved compared to the dose difference of the first single fraction, for example, as at umbilicus, which improved from 83.9% to 98.5%.

CONCLUSIONS: Actual dose measurement analysis of TBI patients revealed a potentially wide variance from the calculated dose. Based from their IVD method for TBI using Cobalt-60 irradiator and moving table, ± 10% over entire body is hard to achieve. However, it can be significantly improved with immediate feedback after the first fraction prior to subsequent treatments.

Journal Article

Abstract  A new antibacterial chlorinated benzophenone derivative, (±)-pestalachloride D (1), along with a related analog, (±)-pestalachloride C (2), was recently isolated from the marine-derived fungus Pestalotiopsis sp. isolated from a soft coral Sarcophyton sp. collected from Yongxing Island in the South China Sea. Both chiral HPLC analysis and single-crystal X-ray data indicated that 1 is a racemic mixture. Interestingly, 1 did not exhibit any effect in the zebrafish embryo teratogenicity assay, while 2 led to abnormal growth. The potential impact on zebrafish embryo growth is discussed based on their crystal structures. The main difference of crystal structures between 1 and 2 is that the six-member non-aromatic ring (O4, C10, C9, C8, C2', and C3') in 1 exhibits a distorted chair conformation, while 2 shows a distorted boat conformation. Moreover, compounds 1 and 2 both exhibited moderate antibacterial activity.

Journal Article

Abstract  The objective of this study was to investigate the transfer of supplemented trans-10,cis-12 (t10,c12) and cis-9, trans-11 (c9,t11) conjugated linoleic acids (CLA) into the body of dairy cows during the first 105 days in milk (DIM). Therefore, five out of 25 first lactation German Holstein cows were slaughtered at 1 DIM without previous CLA or fat supplementation. The remaining animals received daily 6.0 g t10,c12 CLA and 5.7 g c9,t11 CLA as feed supplement (Group CLA, 10 cows) or a stearic acid-based control fat supplement (Group CON, 10 cows). From both groups, five cows were slaughtered at 42 and 105 DIM, respectively. During the slaughter process, the empty body mass of the cow was partitioned into nine fractions (retroperitoneal fat, omental fat, mesenteric fat, subcutaneous fat, meat, bone, offal, hide and mammary gland). The fat content and the fatty acid composition of these fractions were determined. The c9,t11 CLA isomer was detected in all fractions across all groups, but the amount of c9,t11 CLA was not changed because of CLA supplementation. Except for the retroperitonealfat depot, no t10,c12 CLA was detected in the fractions of Group CON. After CLA supplementation, the amount of t10,c12 CLA in the retroperitoneal, mesenteric, subcutaneous, offal and mammary gland fractions was increased. The transfer of t10,c12 CLA into the fractions was more pronounced from 42 until 105 DIM. However, the transfer efficiency of consumed t10,c12 CLA into the fat depot fractions and all fractions was <0.1% and <0.2%, respectively. Overall, the transfer of supplemented CLA isomers into the dairy cow's body was only marginal during the first 105 DIM.

Journal Article

Abstract  Repeat expansions in C9orf72 are a major cause of frontotemporal dementia with amyotrophic lateral sclerosis (FTD-ALS). Not all FTD-ALS patients show expansions. The study examined whether there are clinical differences between FTD-ALS patients with and without expansions in C9orf72. We examined case notes from consecutive FTD-ALS patients, screened for C9orf72 expansions, and documented demographic, neurological, behavioural and cognitive characteristics. Sixty patients met the selection criteria, of whom 11 showed expanded repeats (C9-positive) and 49 did not (C9-negative). A strong male bias was present in the C9-negative group only. A family history of FTD or ALS was recorded in both groups, but was significantly more common in C9-positive cases. Psychotic and irrational behaviours, apathy, disinhibition and loss of empathy were significantly more common in C9-positive cases, with a trend towards more frequent bulbar signs. No differences were found in onset age, presentation (ALS or FTD first), or cognitive changes (language and executive impairments). In conclusion, FTD-ALS is not clinically uniform. Phenotypic differences exist between patients with and without C9orf72 expansions, suggesting that FTD-ALS may be underpinned by distinct neurobiological substrates. The presence of psychiatric symptoms in the context of FTD-ALS should alert clinicians to the possibility of C9orf72 expansions.

Journal Article

Abstract  The first step that precedes hematopoietic transplantation is elimination of pathological hematopoiesis by administration of myeloablative doses of radiochemotherapy. This eliminates hematolymphopoietic cells and at the same time damages hematopoietic microenvironment in bone marrow (BM). The damage of BM tissue leads to activation of complement cascade (CC), and bioactive CC cleavage fragments modulate several steps of BM recovery after transplantation of hematopoietic stem progenitor cells (HSPCs). Accordingly, C3 cleavage fragments (soluble C3a/desArgC3a and solid phase iC3b) and generation of soluble form of C5b-C9 also known as membrane attack complex (MAC) as well as release of antimicrobial cationic peptides from stromal cells (cathelicidin or LL-37 and beta-2 defensin) promote homing of HSPCs. To support this, C3 cleavage fragments and antimicrobial cationic peptides increase homing responsiveness of transplanted HSPCs to stroma-derived factor-1 (SDF-1) gradient. Furthermore, damaged BM cells release several other chemoattractants for HSPCs such as bioactive lipids sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P) and chemotactic purines (ATP and UTP). In this chapter, we will discuss the current view on homing of transplanted HSPCs into BM that in addition to SDF-1 is orchestrated by CC, antimicrobial cationic peptides, and several other prohoming factors. We also propose modulation of CC as a novel strategy to optimize/accelerate homing of HSPCs.

Journal Article

Abstract  A novel pH-sensitive controlled release system is proposed by using mussel-inspired polydopamine (PDA) coated mesoporous silica nanoparticles (MSNs) as nanocarriers.MSNs with a large pore diameter are synthesized by using 1,3,5-trimethylbenzene as a pore-expanding agent and are modified with a PDA coating by virtue of oxidative self-polymerization of dopamine in neutral pH. PDA coated MSNs are characterized by FTIR, TEM, N2 adsorption and XPS techniques. The PDA coating can work as pH-sensitive gatekeepers to control the release of drug molecules from MSNs in response to the pH-stimulus. Doxorubicin (DOX, an anticancer drug) can be released in the acid media and blocked in the neutral media. (C) 2014 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Gastric inhibitory polypeptide (GIP), an incretin, is an important subject in endocrinology. Some LC-MS assays have been proposed; however, their sensitivities are insufficient for the study of endogenous human incretin. Here, we describe a nanoflow LC hybrid triple quadrupole/linear ion trap MS assay for the simultaneous quantification of GIP1-42 and GIP3-42 from human plasma. We selected the surrogate peptide to avoid oxidative modification, and the endoproteinase Asp-N was selected for the proteolysis of GIP1-42 and GIP3-42. The phenylalanine residue at position 6 in both GIP1-42 and GIP3-42 was substituted with (13)C9,(15)N-labeled phenylalanine, and these substituted GIPs were used as the internal standards. This facilitated accurate and precise quantification because large corrections are possible at all steps of sample pretreatment and ionization efficiency. The lower limit of quantification was 1 pM for GIP1-42 and 10 pM for GIP3-42 by using 200 μL of plasma. Quantification of GIP1-42 and GIP3-42 in plasma from patients with type 2 diabetes was possible using this method, which included protein precipitation, Asp-N proteolysis, solid-phase extraction, nanoflow LC, and positive-ion multiple reaction monitoring cubed (MRM(3)) for GIP1-8, and MRM for GIP3-8 to achieve accurate, precise, and quantitative analysis that can be validated to support large clinical trials.

Journal Article

Abstract  Sphingolipids are biologically important and structurally distinct cell membrane components. Fusaruside (1) is a 10,11-unsaturated immunosuppressive fungal sphingolipid with medical potentials for treating liver injury and colitis, but its poor natural abundance bottlenecks its druggability. Here, fusaruside is clarified biosynthetically, and its efficacy-related 10,11-double bond can be generated under the regioselective catalysis of an unprecedented Δ10(E)-sphingolipid desaturase (Δ10(E)-SD). Δ10(E)-SD shares 17.7% amino acid sequence similarity with a C9-unmethylated Δ10-sphingolipid desaturase derived from a marine diatom, and 55.7% with Δ8(E)-SD from Fusarium graminearum. Heterologous expression of Δ10(E)-SD in Pichia pastoris has been established to facilitate a reliable generation of 1 through the Δ10(E)-SD catalyzed desaturation of cerebroside B (2), an abundant fungal sphingolipid. Site directed mutageneses show that the conserved histidines of Δ10(E)-SD are essential for the 10,11-desaturation catalysis, which is also preconditioned by the C9-methylation of the substrate. Moreover, Δ10(E)-SD confers improved survival and faster growth to fungal strains at low temperature and high salinity, in parallel with to higher contents of 1 in the mycelia. Collectively, the investigation describes a new Δ10(E)-sphingolipid desaturase with its heterologous expression fundamentalizing a biotechnological supply of 1, and eases the follow-up clarification of the immunosuppression and stress-tolerance mechanism.

Journal Article

Abstract  The spinosyns are fermentation-derived natural products active against a wide range of insect pests. They are structurally complex, consisting of two sugars (forosamine and rhamnose) coupled to a macrocyclic tetracycle. Removal of the rhamnose sugar results in a >100-fold reduction in insecticidal activity. C9-O-benzyl analogues of spinosyn D were synthesized to determine if the 2',3',4'-tri-O-methyl rhamnose moiety could be replaced with a simpler, synthetic bioisostere. Insecticidal activity was evaluated against larvae of Spodoptera exigua (beet armyworm) and Helicoverpa zea (corn earworm). Whereas most analogues were far less active than spinosyn D, a few of the C9-O-benzyl analogues, such as 4-CN, 4-Cl, 2-isopropyl, and 3,5-diOMe, were within 3-15 times the activity of spinosyn D for larvae of S. exigua and H. zea. Thus, although not yet quite as effective, synthetic bioisosteres can substitute for the naturally occurring 2',3',4'-tri-O-methyl rhamnose moiety.

  • <<
  • 1 of 13
  • >>
Filter Results