OPPT_Perchloroethylene (Perc)_D. Exposure

Project ID

2587

Category

OPPT REs

Added on

March 8, 2017, 9 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  The purpose of this Toxicological Review is to provide scientific support and rationale for the hazard and dose-response assessment in IRIS pertaining to chronic exposure to tetrachloroethylene. It is not intended to be a comprehensive treatise on the chemical or toxicological nature of tetrachloroethylene.

Technical Report

Abstract  Water samples were collected from 27 wells from August through November 2006 to characterize ground-water quality in the Mohawk River Basin. The Mohawk River Basin covers 3,500 square miles in central New York; most of the basin is underlain by sedimentary bedrock, including shale, sandstone, and carbonates. Sand and gravel form the most productive aquifers in the basin. Samples were collected from 13 sand and gravel wells and 14 bedrock wells, including production and domestic wells. The samples were collected and processed through standard U.S. Geological Survey procedures and were analyzed for 226 physical properties and constituents, including physical properties, major ions, nutrients, trace elements, radon-222, pesticides, volatile organic compounds, and bacteria. Many constituents were not detected in any sample, but concentrations of some constituents exceeded current or proposed Federal or New York State drinking-water quality standards, including color (1 sample), pH (2 samples), sodium (11 samples), chloride (2 samples), fluoride (1 sample), sulfate (1 sample), aluminum (2 samples), arsenic (2 samples), iron (10 samples), manganese (10 samples), radon-222 (12 samples), and bacteria (6 samples). Dissolved oxygen concentrations were greater in samples from sand and gravel wells (median 5.6 milligrams per liter [mg/L]) than from bedrock wells (median 0.2 mg/L). The pH was typically neutral or slightly basic (median 7.3); the median water temperature was 11°C. The ions with the highest concentrations were bicarbonate (median 276 mg/L), calcium (median 58.9 mg/L), and sodium (median 41.9 mg/L). Ground water in the basin is generally very hard (180 mg/L as CaCO3 or greater), especially in the Mohawk Valley and areas with carbonate bedrock. Nitrate-plus-nitrite concentrations were generally higher samples from sand and gravel wells (median concentration 0.28 mg/L as N) than in samples from bedrock wells (median < 0.06 mg/L as N), although no concentrations exceeded established State or Federal drinking-water standards of 10 mg/L as N for nitrate and 1 mg/L as N for nitrite. Ammonia concentrations were higher in samples from bedrock wells (median 0.349 mg/L as N) than in those from samples from sand and gravel wells (median 0.006 mg/L as N). The trace elements with the highest concentrations were strontium (median 549 micrograms per liter [μg/L]), iron (median 143 μg/L), boron (median 35 μg/L), and manganese (median 31.1 μg/L). Concentrations of several trace elements, including boron, copper, iron, manganese, and strontium, were higher in samples from bedrock wells than those from sand and gravel wells. The highest radon-222 activities were in samples from bedrock wells (maximum 1,360 pCi/L); 44 percent of all samples exceeded a proposed U.S. Environmental Protection Agency drinking water standard of 300 pCi/L. Nine pesticides and pesticide degradates were detected in six samples at concentrations of 0.42 μg/L or less; all were herbicides or their degradates, and most were degradates of alachlor, atrazine, and metolachlor. Six volatile organic compounds were detected in four samples at concentrations of 0.8 μg/L or less, including four trihalomethanes, tetrachloroethene, and toluene; most detections were in sand and gravel wells and none of the concentrations exceeded drinking water standards. Coliform bacteria were detected in six samples but fecal coliform bacteria, including Escherichia coli, were not detected in any sample.

Book/Book Chapter

Abstract  Soil gas was assessed for contaminants at three former fuel-dispensing sites at Fort Gordon, Georgia, from October 2010 to September 2011. The assessment included delineation of organic contaminants using soil-gas samplers collected from the former fuel-dispensing sites at 8th Street, Chamberlain Avenue, and 12th Street. This assessment was conducted to provide environmental contamination data to Fort Gordon personnel pursuant to requirements for the Resource Conservation and Recovery Act Part B Hazardous Waste Permit process. Soil-gas samplers installed and retrieved during June and August 2011 at the 8th Street site had detections above the method detection level (MDL) for the mass of total petroleum hydrocarbons (TPH), benzene, toluene, ortho-xylene, undecane, tridecane, pentadecane, and chloroform. Total petroleum hydrocarbons soil-gas mass exceeded the MDL of 0.02 microgram in 54 of the 55 soil-gas samplers. The highest detection of TPH soil-gas mass was 146.10 micrograms, located in the central part of the site. Benzene mass exceeded the MDL of 0.01 microgram in 23 soil-gas samplers, whereas toluene was detected in only 10 soil-gas samplers. Ortho-xylene was detected above the MDL in only one soil-gas sampler. The highest soil-gas mass detected for undecane, tridecane, and pentadecane was located in the northeastern corner of the 8th Street site. Chloroform mass greater than the MDL of 0.01 microgram was detected in less than one-third of the soil-gas samplers. Soil-gas masses above the MDL were identified for TPH, gasoline-related compounds, diesel-range alkanes, trimethylbenzenes, naphthalene, 2-methyl-napthalene, octane, and tetrachloroethylene for the July 2011 soil-gas survey at the Chamberlain Avenue site. All 30 of the soil-gas samplers contained TPH mass above the MDL. The highest detection of TPH mass, 426.36 micrograms, was for a soil-gas sampler located near the northern boundary of the site. Gasoline-related compounds and diesel-range alkanes were detected in multiple soil-gas samplers, and the highest detections of these compounds were located near the central part of the site near existing, nonoperational, fuel-dispensing pumps. Trimethylbenzenes were detected in less than half of the soil-gas samplers. Naphthalene soil-gas mass was detected above the MDL in 10 soil-gas samplers, whereas 2-methyl-napthalene was detected above the MDL in half of the soil-gas samplers. Octane mass was detected above the MDL in one soil-gas sampler located near the central part of the site. Tetrachloroethylene soil-gas mass was detected above the MDL in more than half of the soil-gas samplers, and the highest tetrachloroethylene soil-gas mass of 0.90 microgram was located in the northeastern part of the site. Soil-gas samplers collected at the 12th Street site during July 2011 contained soil-gas mass above the MDL for TPH, toluene, undecane, tridecane, and pentadecane (diesel-range alkanes), trichloroethylene, 1,4-dichlorobenzene, chloroform, and 1,2,4-trimethylbenzene. The highest detected TPH mass was 24.37 micrograms in a soil-gas sampler located in the northern part of the site. The highest detection of toluene soil-gas mass was from a soil-gas sampler located near the southern boundary of the site. The diesel-range alkanes were detected above the MDL in five soil-gas samplers; the highest detection of soil-gas diesel mass, 0.65 microgram, was located in the southern part of the site. Trichloroethylene and 1,4-dichlorobenzene were detected above the MDL in the northern part of the site in one soil-gas sampler that also had one of the highest detections of TPH. Chloroform was detected above the MDL in three soil-gas samplers, whereas 1,2,4-trimethylbenzene soil-gas mass was detected above the MDL in two soil-gas samplers.

  • <<
  • 7 of 14
  • >>
Filter Results