PFOA (335-67-1) and PFOS (1763-23-1)

Project ID

2608

Category

OW - HHRAB

Added on

Aug. 9, 2017, 6:36 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Concern with increasing levels of emerging contaminants exists on a global scale. Three commonly observed emerging environmental contaminants: triclosan (2,4,4-trichloro-2'-hydroxydiphenyl ether), a synthetic, broad-spectrum antibacterial agent, and perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), used in stain- and water-resistant treatments, have become distributed ubiquitously across ecosystems and have been detected in wildlife and humans. MCF-7 BOS human breast cancer cells were used to investigate the potential for cytotoxicity, estrogenicity and anti-estrogenicity of these three compounds at environmentally relevant concentrations using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt assay (MTS) and the E-SCREEN bioassay. The doses used were 0.002-200 µg ml(-1) for triclosan and 0.03-30 µg ml(-1) for PFOS and PFOA. Quantitative results from the MTS assay revealed no significant cytotoxicity at lower concentrations for any of the test compounds; however, both triclosan and PFOA were cytotoxic at the highest concentrations examined (100-200 and 30 µg ml(-1), respectively), while PFOS showed no significant cytotoxicity at any of the concentrations tested. Positive estrogenic responses (P < 0.05) were elicited from the E-SCREEN at all concentrations examined for triclosan and PFOA and at 30 µg ml(-1) for PFOS. Further, significant anti-estrogenic activity (P < 0.05) was detected for all compounds tested at all concentrations when cells were co-exposed with 10(-9) m 17-β estradiol (E(2)). The overall results demonstrated that triclosan, PFOS and PFOA have estrogenic activities and that co-exposure to contaminants and E(2) produced anti-estrogenic effects. Each of these compounds could provide a source of xenoestrogens to humans and wildlife in the environment. Published 2011. This article is a US Government work and is in the public domain in the USA.

Journal Article

Abstract  Significant evidence supports that many endocrine disrupting chemicals could affect female reproductive health. Aim of this study was to compare the internal exposure to bisphenol A (BPA), perfluorooctane sulphonate (PFOS), perfluorooctanoic acid (PFOA), monoethylhexyl phthalate (MEHP), and di(2-ethylhexyl) phthalate (DEHP) in serum samples of 111 infertile women and 44 fertile women. Levels of gene expression of nuclear receptors (ER α , ER β , AR, AhR, PXR, and PPAR γ ) were also analyzed as biomarkers of effective dose. The percentage of women with BPA concentrations above the limit of detection was significantly higher in infertile women than in controls. No statistically significant difference was found with regard to PFOS, PFOA, MEHP and DEHP. Infertile patients showed gene expression levels of ER α , ER β , AR, and PXR significantly higher than controls. In infertile women, a positive association was found between BPA and MEHP levels and ER α , ER β , AR, AhR, and PXR expression. PFOS concentration positively correlated with AR and PXR expression. PFOA levels negatively correlated with AhR expression. No correlation was found between DEHP levels and all evaluated nuclear receptors. This study underlines the need to provide special attention to substances that are still widely present in the environment and to integrate exposure measurements with relevant indicators of biological effects.

Journal Article

Abstract  BACKGROUND: Immune suppression may be a critical effect associated with exposure to perfluorinated compounds (PFCs), as indicated by recent data on vaccine antibody responses in children. Therefore, this information may be crucial when deciding on exposure limits. METHODS: Results obtained from follow-up of a Faroese birth cohort were used. Serum-PFC concentrations were measured at age 5 years, and serum antibody concentrations against tetanus and diphtheria toxoids were obtained at ages 7 years. Benchmark dose results were calculated in terms of serum concentrations for 431 children with complete data using linear and logarithmic curves, and sensitivity analyses were included to explore the impact of the low-dose curve shape. RESULTS: Under different linear assumptions regarding dose-dependence of the effects, benchmark dose levels were about 1.3 ng/mL serum for perfluorooctane sulfonic acid and 0.3 ng/mL serum for perfluorooctanoic acid at a benchmark dose response of 5%. These results are below average serum concentrations reported in recent population studies. Even lower results were obtained using logarithmic dose--response curves. Assumption of no effect below the lowest observed dose resulted in higher benchmark dose results, as did a benchmark response of 10%. CONCLUSIONS: The benchmark dose results obtained are in accordance with recent data on toxicity in experimental models. When the results are converted to approximate exposure limits for drinking water, current limits appear to be several hundred fold too high. Current drinking water limits therefore need to be reconsidered.

Journal Article

Abstract  Exposure of mice to perfluorooctanoate (PFOA) evokes pronounced hepatomegaly along with significant alterations in both the histological structure and immune status of the liver. The present study was designed to evaluate the effects of this perfluorochemical on immune-mediated liver damage. In this connection, the influence of both sub-acute (10 days), moderate-dose (0.002% w/w=3±0.7mg/kg body weight/day) and short-term (28 days), low-dose (0.00005% w/w=70±2μg/kg body weight/day) dietary pretreatment with PFOA on the development of concanavalin A (Con A)-induced liver damage in mice was examined. With sub-acute, moderate, but not short-term, low-dose exposure, PFOA aggravated the acute liver damage caused by Con A, i.e., elevated serum levels of transaminases and led to more pronounced damage of hepatic tissue. This aggravation was associated with significantly enhanced hepatic level of interleukin-6 (IL-6), but unaltered hepatic levels of tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-4 (IL-4). Moreover, hepatic DNA fragmentation was not changed by sub-acute exposure to the moderate-dose. Our findings imply that exposure to PFOA may sensitize hepatic parenchymal cells to other toxicants that activate the hepatic immune system and thereby aggravate liver injury during acute inflammation.

Journal Article

Abstract  In the present study, we have used salmon embryos whose continuous exposure to waterborne PFOA or PFOS at 100 μg/L started as freshly fertilized eggs, and lasted for a total of 52 days. PFOS and PFOA were dissolved in methanol (carrier vehicle) whose concentration never exceeded 0.01% of total tank volume. Samples were collected at day 21, 28, 35, 52, 49 and 56 after the start of the exposure. Note that days 49 and 56 represent end of exposure and 1 week after a recovery period, respectively. Tissue bioaccumulations were determined by HPLC/MS/MS, steroid hormones, fatty acids (FAs) and lipids were determined by GC-MS, while mRNA expression levels of genes were determined by qPCR in whole body homogenate. We observed that PFOS and PFOA showed a steady increase in whole body burden during the exposure period, with a slight decrease after the recovery period. Calculated somatic indexes showed that PFOA produced increases in heart-, thymus-, liver- and kidney somatic indexes (HSI, TSI, LSI and KSI). PFOA and PFOS exposure produced significant decreases in whole body dehydroepiandrosterone (DHEA), estrone and testosterone at sampling day 21 and a strong increase of cortisol and cholesterol at the end of recovery period (day 56). PFOA and PFOS effects differed with DHEA and estrone. While PFOS decreased DHEA levels, PFOA produced an increase at day 49, and while PFOS decreased estrone, PFOA produced a slight increase at day 56. We observed changes in FA composition that predominantly involved increases in FA methyl esters (FAMEs), mono- and poly-unsaturated FA (MUFA and PUFA) and a decrease in n-3/n-6 PUFA ratio by both PFOA and PFOS. Particularly, an increase in - pentadecenoic MUFA (15:1), two n-3 PUFAs α-linolenic acid [ALA: 18:3 n3] and eicosapentaenoic acid [EPA: 20:5 n-3] and n-6 PUFA: arachidonic acid [ARA: 20:4 n6], docosapentaenoic acid (DPA) by PFOA and PFOS were observed. These effects were associated with changes in mRNA expression of FA elongase (FAE), Δ5-desaturase (FAD5) and Δ6-desaturase (FAD6) genes. In summary, the changes in hormonal and FA profiles may represent cellular and/or physiological adaptation to continuous PFOS and PFOA exposure by increasing membrane fluidity, and/or overt developmental effects. The present findings provide some potential insights and basis for a better understanding on the possible mechanisms of PFCs toxicity in fish.

Journal Article

Abstract  Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are considered biologically toxic due to their persistence in the environment. The effects of repeated exposure to these compounds on differentially expressed genes (DEGs) were investigated in liver of the medaka, Oryzias latipes. In this study, seven genes-except for cytochrome P450 3A (CYP450 3A)-were identified as DEGs that were downregulated in response to 15- and 30 days exposures to PFOA and/or PFOS. Four DEGs (c-type lysozyme, EF-1β, complement component C3-1, and NADH dehydrogenase subunit 1) returned to basal levels after 15 days of recovery after 30 days of exposure to the compounds. In contrast, three DEGs (transferrin, alcohol dehydrogenase class VI, and CYP450 3A) were still upregulated by PFOS after 15 days of recovery. In addition, the effect of PFOS showed more accumulation after 15 days of recovery than PFOA. These data suggest that PFOS accumulates more in tissue than PFOA and causes high cellular toxicity by way of suppression of the genes encoding transferrin and alcohol dehydrogenase class VI, whereas there is upregulation of cytochrome P450 3A.

Journal Article

Abstract  Low level chronic exposure to toxicants is associated with a range of adverse health effects. Understanding the various factors that influence the chemical burden of an individual is of critical importance to public health strategies. We investigated the relationships between socioeconomic status (SES) and bio-monitored chemical concentration in five cross-sectional waves of the U.S. National Health and Nutrition Examination Survey (NHANES). We utilised adjusted linear regression models to investigate the association between 179 toxicants and the poverty income ratio (PIR) for five NHANES waves. We then selected a subset of chemicals associated with PIR in 3 or more NHANES waves and investigated potential mediating factors using structural equation modelling. PIR was associated with 18 chemicals in 3 or more NHANES waves. Higher SES individuals had higher burdens of serum and urinary mercury, arsenic, caesium, thallium, perfluorooctanoic acid, perfluorononanoic acid, mono(carboxyoctyl) phthalate and benzophenone-3. Inverse associations were noted between PIR and serum and urinary lead and cadmium, antimony, bisphenol A and three phthalates (mono-benzyl, mono-isobutyl, mono-n-butyl). Key mediators included fish and shellfish consumption for the PIR, mercury, arsenic, thallium and perfluorononanoic acid associations. Sunscreen use was an important mediator in the benzophenone-3/PIR relationship. The association between PIR and cadmium or lead was partially mediated by smoking, occupation and diet. These results provide a comprehensive analysis of exposure patterns as a function of socioeconomic status in US adults, providing important information to guide future public health remediation measures to decrease toxicant and disease burdens within society.

Journal Article

Abstract  Direct evidence was first demonstrated for the oxidative degradation of decabromodiphenyl ether (BDE209) in aqueous TiO(2) dispersions under UV irradiation (λ > 340 nm). BDE209 was hardly debrominated over TiO(2) in UV-irradiated acetonitrile dispersions, but the addition of water into the dispersions greatly enhanced its photocatalytic oxidative debromination. The debromination efficiency of BDE209 as high as 95.6% was achieved in aqueous TiO(2) dispersions after 12 h of UV irradiation. The photocatalytic oxidation of BDE209 resulted in generation of aromatic ring-opening intermediates such as brominated dienoic acids, which were further degraded by prolonging UV irradiation time. The photocatalytic oxidative debromination of BDE209 was further confirmed by the observation that the BDE209 degradation in water-acetonitrile mixtures with different water contents was positively correlated with the formation of •OH radicals, but not photogenerated electrons. The use of water not only avoided the scavenging of reactive radicals by organic solvent but also enhanced the adsorption of BDE209 on the surface of TiO(2), both of which favor the contact of BDE209 with photogenerated holes and •OH species. The confirmation of efficient oxidative degradation and debromination of BDE209 is very important for finding new ways to remove polybrominated diphenyl ethers from the environment.

Journal Article

Abstract  Substantial population exposure to endocrine disrupting chemicals, combined with available biomarkers and public concern, has resulted in an explosion of human health effects research. At the same time, remarkable shifts in the regulations governing the composition of some consumer products that contain endocrine disruptors (EDs) has occurred. However, important questions remain as to the weight of evidence linking EDs to human health end points. In this review, we critically examine the literature linking ED exposures to child neurodevelopment, focusing in particular on two model exposures to demonstrate issues related to bioaccumulative [e.g., polychlorinated biphenyls (PCBs)] and rapidly metabolized (e.g., phthalates) compounds, respectively. Issues of study design, confounding, and exposure measurement are considered. Given widespread exposure to these compounds, the potential public health consequences of even small effects on human health are substantial. Therefore, advancing our understanding of any impact calls for careful attention to the principles of causal inference.

Journal Article

Abstract  In this study we report the human plasma concentrations of some common endocrine disrupting chemicals (EDCs) in the Hong Kong population. We have analyzed 153 plasma samples for the contaminants by methods involving labeled standards spiked into the samples. Quantification was performed using high performance liquid chromatography tandem mass spectrometry for bisphenol-A (BPA) and perfluorinated compounds (PFCs), and gas chromatography mass spectrometry methods for phthalates. We found BPA, several types of PFCs and phthalates in over 90% of the plasma samples. Perfluorooctane sulfonate (PFOS) was the dominant PFC, followed by perfluroroctanoic acid (PFOA) and perfluorohexane sulfonate (PFHxS). Eight out of ten phthalates were detected, with bis(2-ethylhexyl) phthalate (DEHP) as the most abundant, followed by bis(2-methoxyethyl) phthalate (DMEP) and dioctyl phthalate (DnOP). The levels of PFOS, PFOA, PFHxS and perfluorohexanoic acid (PFHxA) were significantly higher in the male plasma samples (p<0.05), while the mean plasma levels of DEHP and n-butyl benzyl phthalate (BBP) were significantly higher in the young age group (p<0.02). The presence of the selected EDCs in human blood plasma indicates common exposure routes among different population cohorts. Although the plasma levels of the EDCs were comparable to other countries, regular monitoring of human blood EDC contamination levels is necessary to provide a time-trend database for the estimation of exposure risk and to formulate appropriate public health policy.

Journal Article

Abstract  A method for the simultaneous determination of six perfluoroalkyl compounds (perfluorooctanesulfonic acid (PFOS) and five perfluoroalkyl carboxylic acids), five phenolic compounds (nonylphenol (NP), bisphenol A (BPA), and methyl-, ethyl- and propylparabens), and the brominated flame retardant hexabromocyclododecane (HBCDD) in surface water and effluent wastewater has been developed. The selected pollutants include eight of the industrial pollutants (PFOS and derivatives, NP, and HBCDD) that could be regulated in surface water according to an European Union Directive proposal and four compounds of great concern because their estrogenicity (BPA and parabens). The method is based on solid-phase extraction and determination by high-performance liquid chromatography-triple quadrupole mass spectrometry in negative electrospray ionization mode. Method quantitation limits of NP, PFOS and derivatives, and HBCDD allow its application for routinely control of surface water according to the EU proposal of directive.

Journal Article

Abstract  Perfluoroalkyl substances (PFASs) are protein-binding blood-accumulating contaminants that may have detrimental toxicological effects on the early phases of mammalian development. To enable an evaluation of the potential health risks of PFAS exposure for polar bears (Ursus maritimus), an exposure assessment was made by examining plasma levels of PFASs in polar bear mothers in relation to their suckling cubs-of-the-year (~4 months old). Samples were collected at Svalbard in 1998 and 2008, and we investigated the between-year differences in levels of PFASs. Seven perfluorinated carboxylic acids (∑₇PFCAs: PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA) and two perfluorinated sulfonic acids (∑₂PFSAs: PFHxS and PFOS) were detected in the majority of the mothers and cubs from both years. In mothers and cubs, most PFCAs were detected in higher concentrations in 2008 than in 1998. On the contrary, levels of PFOS were lower in 2008 than in 1998, while levels of PFHxS did not differ between the two sampling years. PFOS was the dominating compound in mothers and cubs both in 1998 and in 2008. Concentration of PFHpA did not differ between mothers and cubs, while concentrations of PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFHxS, and PFOS were higher in mothers than in their cubs. Except from PFHpA, all compounds correlated significantly between mothers and their cubs. The mean cub to mother ratios ranged from 0.15 for PFNA to 1.69 for PFHpA. On average (mean±standard error of mean), the levels of ∑₇PFCAs and ∑₂PFSAs in cubs were 0.24±0.01 and 0.22±0.01 times the levels in their mothers, respectively. Although maternal transfer appears to be a substantial source of exposure for the cubs, the low cub to mother ratios indicate that maternal transfer of PFASs in polar bears is relatively low in comparison with hydrophobic contaminants (e.g. PCBs). Because the level of several PFASs in mothers and cubs from both sampling years exceeded the levels associated with health effects in humans, our findings raise concern on the potential health effects of PFASs in polar bears from Svalbard. Effort should be made to examine the potential health effects of PFASs in polar bears.

Journal Article

Abstract  We measured concentrations of selected organohalogens, fluorinated compounds and mercury in whole, ground silver (Hypophthalmichthys molitrix) and bighead (H. nobilis) carp from the Illinois River, Illinois, in 2010 and 2011 to characterize spatial and interspecific patterns of contaminant burdens. Silver carp, which had greater lipid content, tended to have greater concentrations of lipophilic compounds. Concentrations of organohalogens were generally greater in carp from the upper reaches of the river. The halogenated compounds were associated with length and lipid content in silver carp. Bighead carp had greater mercury concentrations than did silver carp; total mercury concentrations were negatively associated with lipid content of bighead carp. Perfluorinated compounds, comprised predominantly of perfluorooctane sulfonic acid, did not vary by species or river reach. Chlordanes and polychlorinated biphenyls were of potential concern with regard to the use of these carp as animal feed additives. Our results indicated that, even though they occupy a lower trophic level than many similarly-sized fish, these carp may accumulate measureable concentrations of organic contaminants.

Journal Article

Abstract  The aim of the Bavarian Monitoring of Breast Milk (BAMBI) project was to examine 10 organochlorine pesticides (OPs), 3 nitro musks, 6 indicator polychlorinated biphenyls (PCBs), 7 polychlorinated dibenzo-p-dioxins (PCDDs), 10 polychlorinated dibenzofurans (PCDFs), 12 dioxin-like PCBs (dl-PCBs) and several perfluorinated alkyl compounds in breast milk samples. A total of 516 breast milk samples were collected from seven regions in Bavaria and were analyzed by means of GC/ECD, GC/HRMS, and LC/MS-MS. Concerning the OPs, only hexachlorobenzene and a metabolite of DDT, 1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene (p,p'-DDE), could be quantified in all samples (median: 16 ngg(-1) lipid and 63 ngg(-1) lipid, respectively). Median concentrations of 150 ngg(-1) lipid (range: 3-1900 ngg(-1) lipid) were found for the sum of the indicator PCBs. The concentrations of the PCDDs/PCDFs and the dl-PCBs ranged from 0.8 to 15.1 (median 5.7) pg WHO-TEQ1998g(-1) lipid and from 1.5 to 18.9 pg (median 6.4) WHO-TEQ1998 g(-1) lipid, respectively. The median perfluorooctane sulfonate concentration was 0.05 μgL(-1) (range: <0.02-0.26 μgL), while the other PFCs were observed only in a subset of samples. On the basis of the median and 95th percentile concentration, "medium" and "high" intake levels were estimated for a 3-month-old exclusively breastfed infant. In particular, "medium" and "high" intake levels were calculated of 69 and 133 pg WHO1998 TEQ kg(-1) b.w. for PCDDs/PCDFs, 8 and 21 ngkg(-1) b.w. for dl-PCBs, and 6 and 25 ngkg(-1) b.w. for perfluorooctane sulfonate, respectively. The calculated intake for perfluorinated substances is clearly below the tolerable daily intake (TDI), while the established TDI values are still clearly exceeded for PCDDs/PCDFs and dl-PCBs.

Journal Article

Abstract  Activated persulfate oxidation technologies based on sulfate radicals were first evaluated for defluorination of aqueous perfluorooctanesulfonate (PFOS). The influences of catalytic method, time, pH and K2S2O8 amounts on PFOS defluorination were investigated. The intermediate products during PFOS defluorination were detected by using LC/MS/MS. The results showed that the S2O8 (2-) had weak effect on the defluorination of PFOS, while the PFOS was oxidatively defluorinated by sulfate radicals in water. The defluorination efficiency of PFOS under various treatment was followed the order: HT (hydrothermal)/K2S2O8 > UV (ultraviolet)/K2S2O8 > Fe(2+)/K2S2O8 > US (ultrasound)/K2S2O8. Low pH was favorable for the PFOS defluorination with sulfate radicals. Increase in the amount of S2O8 (2-) had positive effect on PFOS defluorination. However, further increase in amounts of S2O8 (2-) caused insignificant improvement in PFOS defluorination due to elimination of sulfate radicals under high concentration of S2O8 (2-). CF3(CF2)nCOOH (n = 0-6) were detected as intermediates during PFOS defluorination. Sulfate radicals oxidation and hydrolysis were the main mechanisms involved in defluorination process of PFOS.

Journal Article

Abstract  Superoleophobic surfaces have attracted increasing interest in recent years due to their potential application in various fields. In this paper, we report a surface that exhibits superoleophobicity both in air and in seawater. A polyelectrolyte multilayer (PEM) is assembled on an aluminum substrate with a micro/nano hierarchical surface structure, and the counterion in the PEM is exchanged with perfluorooctanoate (PFO), making the surface superhydrophobic and superoleophobic in air. When submerged in artificial seawater, the surface exhibits underwater superoleophobicity, with a 1,2-dichloroethane contact angle of 163°. X-ray photoelectron spectroscopic analysis and controlled experiments reveal that, upon exposure to seawater, the PEM spontaneously exchanges the PFO counterion with the chloride and sulfate ions in the seawater, making the surface hydrophilic and hence oil-repelling underwater. When withdrawn from seawater, superoleophobicity in air is restored by treating the surface in a PFO solution shortly to reinstall the PFO counterion. The switching between the two wetting states (superoleophobicity in air and underwater) is completely reversible. This simple and versatile approach can be readily extended to other substrates, making it a promising method for introduction of dual superoleophobicity to surfaces used in many fields.

Journal Article

Abstract  Short-chain perfluoroalkyl acids (PFAAs), which have less than seven fluorinated carbons, have been introduced as substitutes for eight-carbon homologue products. In this study, water, sediment, and biological samples (fish and plant) were collected from Tangxun Lake, which is located near a production base of the fluorochemical industry in Wuhan, China. Perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) were the predominant PFAAs in surface water, with average concentrations of 3660 ng/L and 4770 ng/L, respectively. However, perfluorooctane sulfonate (PFOS) was the most abundant PFAA in sediments, with an average concentration of 74.4 ng/g dw. The organic carbon normalized distribution coefficients (KOC) indicated that short-chain PFAAs (CF2 < 7) tended to have lower adsorption potentials than PFOS, perfluorooctanoic acid (PFOA), and longer perfluoroalkyl chain compounds. PFBS and PFBA could transport to a farther distance in the horizontal direction along the water flow and infiltrate into deeper depths in the vertical direction. However, levels of PFOS and PFOA in water dropped exponentially along the current, and their proportions were decreased gradually with the increasing depth in sediment cores. Furthermore, values of log bioconcentration factor (BCF) of the short-chain PFAAs were all relatively low (<1), indicating no bioaccumulation potentials for short-chain PFAAs in aquatic species. [PUBLICATION ABSTRACT]

Journal Article

Abstract  Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC-MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values<LOD considered as 0), high freshwater fish consumers appear as the most exposed to PFOS (7.5ng.kg(-1) bw.d(-1)), PFUnA (1.3ng.kg(-1) bw.d(-1)), PFDA (0.4ng.kg(-1) bw.d(-1)) and PFHpS (0.03ng.kg(-1) bw.d(-1)) while high seafood consumers appear as the most exposed to PFOA (1.2ng.kg(-1) bw.d(-1)), PFNA (0.2ng.kg(-1) bw.d(-1)) and PFHxS (0.06ng.kg(-1) bw.d(-1)). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals.

Journal Article

Abstract  The distribution in water and sediment, the sources/sinks and the risk of perfluorinated compounds (PFCs) in Lake Taihu, China were investigated. The total PFCs concentration was 164 to 299ngL(-1) in water and 5.8 to 35ngg(-1) (dw) in sediment. The highest concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in water were 29.2ngL(-1) and 136ngL(-1). PFOS was largely associated with sediment, whereas short chain PFCs predominated in water. The partition coefficient (Kd) was positively correlated with the organic carbon fraction (ƒoc) for PFOS but not for the other PFCs. The organic carbon normalized partition coefficient (Koc) increased by 0.51 log units for each additional CF2 moiety from perfluoro-butanesulfonate (PFBS) to PFOS. For the same chain length but different functional groups, the log Koc of PFOS was 1.35 units higher than PFOA. PFOS exhibited the highest affinity for sediment through the partition mechanism, and ƒoc affected the sediment as a sink of PFOS. Although there was no immediate health impact by the intake of the water alone, the consumption of aquatic products may cause potential health risks for animals/humans on the time scale of months to years. The relationship between the concentration, water-sediment distribution, bioaccumulation and toxicity should be considered in determining the water standards of PFCs.

Journal Article

Abstract  The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from solid matrices has received considerable attention because of the environmental persistence, bioaccumulation, and potential toxicity of these compounds. This study presents a simple method using concentrated HNO(3) as a suppression agent, and methanol-modified supercritical carbon dioxide (Sc-CO(2)) extraction for removing PFOS and PFOA from solid matrices. The optimal conditions were 16 M HNO(3) and 20% (v/v) methanol containing Sc-CO(2), under a pressure of 20.3 MPa and a temperature of 50 °C. Extraction time was set at 70 min (40 min for static and 30 min for dynamic extraction). PFOA and PFOS were identified and quantitated by liquid chromatography/mass spectrometry. The extraction efficiencies (with double extractions) were close to 100% for PFOA and 80% for PFOS for both paper and fabric matrices. The extraction efficiencies for sand were approximately 77% for PFOA and 59% for PFOS. The results show that this method is accurate, and effective, and that it provides a promising and convenient approach to remediate the environment of hazardous PFOA and PFOS contamination.

DOI
Journal Article

Abstract  The Fe3O4@SiO2-BiOBr (FSB) magnetic composite was prepared and introduced into the dielectric barrier discharge (DBD) system as a heterogeneous Fenton-like photocatalyst for synergistic degradation of perfluorooctanoic acid (PFOA). The FSB was characterized by X-ray diffraction, UV-vis diffuse reflectance spectra, energy dispersive X-ray spectroscopy and scanning electron microscope. Characterization results demonstrated that BiOBr was successfully coated on Fe3O4@SiO2, forming FSB, and it exhibited good UV & visible response. The presence of FSB accelerated PFOA degradation: PFOA removal efficiency and total organic carbon removal from DBD-FSB system increased from 73.5% to 92.9% and 28.9% to 62.5%, respectively, within 60 min under reaction conditions of 20 mg L-1 PFOA, initial pH 4.28, 100 mg L-1 FSB and 22 kV peak voltage, as compared with DBD system. Accordingly, defluorination efficiency of PFOA and energy efficiency increased from 21% to 32.8% and 46.39 mg kW(-1)h(-1) to 72.47 mg kW(-1)h(-1), respectively. The synergetic mechanism was attributed to the combination of active species such as center dot OH, H2O2, O-3, directly generated from the DBD plasma and a great amount of center dot OH generated from Fenton-like reaction initiated by FSB photocatalyst under light irradiation emitted during discharge. The center dot OH and photogenerated holes played essential roles in the mineralization process. Based on the identified intermediates, possible degradation pathways of PFOA in DBD-FSB system were proposed, and PFOA degradation mainly occurred via the pathway of perfluoroalkyl radical pathway. 2017 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Many tons of intentionally produced obsolete halogenated persistent organic pollutants (POPs), are stored worldwide in stockpiles, often in an unsafe manner. These are a serious threat to the environment and to human health due to their ability to migrate and accumulate in the biosphere. New technologies, alternatives to combustion, are required to destroy these substances, hopefully to their complete mineralization. In the last 20 years mechanochemical destruction has shown potential to achieve pollutant degradation, both of the pure substances and in contaminated soils. This capability has been tested for many halogenated pollutants, with various reagents, and under different milling conditions. In the present paper, a review of the published work in this field is followed by a critique of the state of the art of POPs mechanochemical destruction and its applicability to full-scale halogenated waste treatment.

DOI
Journal Article

Abstract  Perfluoroalkyl substances (PFASs) are a family of persistent pollutants of anthropic origin which can reach humans mainly through diet, causing potentially dangerous effects on health. Fish and fishery products are a major source of exposure, but intra-, and inter-specific contamination can be extremely variable. In the present study a single species monitoring of the presence of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), the two main compounds of the family, was performed on 140 farmed and wild caught European sea basses (Dicentrarchus labrax) from different places in the Mediterranean area. The results highlight a strong correlation between the level of contamination and the origin of fishes, if wild or farmed: on average, wild caught sea basses (PFOS: 112-12,405 ng/kg, median 1345 ng/kg; PFOA: 9-487 ng/kg, median 28 ng/kg) showed higher levels than intensively farmed sea basses (PFOS: 11-105 ng/kg, median 32 ng/kg; PFOA: 9-51 ng/kg, median 21 ng/kg). Significant differences among the various rearing systems were also observed, with extensively-farmed subjects presenting relatively higher levels of both compounds compared to intensively farmed. Moreover, a certain variability among wild fish caught from different sampling sites was observed, confirming that PFASs contamination, which reached in some cases noticeable concentrations, might be influenced by the geographical origin. (C) 2015 Elsevier Ltd. All rights reserved.

DOI
Journal Article

Abstract  Perfluorooctane sulfonates (PFOS) as a persistent, bioaccumulative and toxic pollutant has been detected in surface water around the world and attracted great attention in recent years. It's important and urgent to develop effective technology to remove PFOS. The effect of coagulation pretreatment on the removal efficiency of PFOS by nanaltration (NF) was investigated. Two types of NF membranes were used to test the PFOS rejections in three different solutions including DI water, humic acid (HA) solution and coagulation solution. The characterizations such as HA and PFOS accumulation on the membranes, scanning electron microscopy (SEM) and surface zeta potential analysis of virgin and fouled membranes were conducted to study the separation mechanism. The experimental results showed that PFOS can be partly removed by coagulation. The NF270 membrane exhibited a higher PFOS rejection (>95%) than the HYDRACORE membrane (40-60%) in single NF process. The surface negative charge density of both NF membranes reached a minimum value after filtering coagulation effluent, which might be a result of floc adsorption on the membrane surface. Coagulation pretreatment was effective to enhance the PFOS rejection of the NF membranes. In particular, the rejection efficiency of the HYDRACORE membrane increased from 55% to 86% at a trans-membrane pressure of 0.4 MPa. The SEM images showed that the fouling layer formed by flocs was loose and highly permeable. (C) 2015 Elsevier B.V. All rights reserved.

  • <<
  • 1 of 298
  • >>
Filter Results