PFBS

Project ID

2610

Category

PFAS

Added on

Aug. 9, 2017, 6:55 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.

Journal Article

Abstract  Perfluorobutanesulfonate (PFBS) is a surfactant and degradation product of substances based on perfluorobutanesulfonyl fluoride. A two-generation reproductive rat study has been conducted with potassium PFBS (K(+)PFBS). Parental-generation (P) rats were dosed orally by gavage with 0, 30, 100, 300 and 1000mg K(+)PFBS/kg/day for 10 weeks prior to and through mating (males and females), as well as during gestation and lactation (females only). First generation (F1) pups were dosed similarly, beginning at weaning. Second generation (F2) pups were not directly dosed but potentially exposed to PFBS through placental transfer and nursing, and the study was terminated 3 weeks after their birth. Endpoints evaluated included body weight, food consumption, clinical signs, estrus cycling, sperm quality, pregnancy, natural delivery, litter outcomes, and developmental landmarks. The no-observable-adverse effect dose level (NOAEL) in the parental generations (P and F1) was 100mg/kg/day. In the 300 and 1000mg/kg/day dose group rats, there were (1) increased liver weight (absolute or relative) and corresponding increased incidence of adaptive hepatocellular hypertrophy (male only) and (2) increased incidence of minimal to mild microscopic findings in the medulla and papilla of the kidneys (male and female). There were no K(+)PFBS treatment-related effects on fertility or reproduction among the P or the F1 rats. There were no microscopic changes in male or female reproductive organs, and no biologically relevant effects on sperm parameters, mating, estrous cycles, pregnancy, and natural delivery in the P- or F1-generations. There were no K(+)PFBS treatment-related effects on survival of pups in the two-generation study. Litter size and average pup birth weight per litter were not statistically significantly different from controls in any dose group. In the F1-generation, terminal body weight was reduced in males at 1000mg/kg/day. Preputial separation was slightly delayed (approximately 2 days) at this dose, a finding consistent with the body weight reduction. Essentially no effects were observed in the F1 females. F2 pups had normal body weights. The reproductive NOAEL was >1000mg/kg/day in both generations.

Journal Article

Abstract  For the analysis of perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) in shells, an extraction method of mixed inorganic acid digestion coupled with solid phase extraction (SPE) was established. The target compounds were determined by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The shell powder was at first digested with the mixture of nitric acid and hydrochloric acid, then the digestion solution was adjusted to pH 6 with sodium hydroxide, and cleaned up with Oasis WAX SPE cartridge. The perfluoro sulfonated chemicals were quantified with HPLC-MS/MS using electrospray ionization in negative ion mode with internal standard method. The limits of detection (LODs) were of 0.28 ng/g for PFBS, 0.42 ng/g for PFHxS and 0.43 ng/g for PFOS, and matrix recoveries of the perfluoro sulfonated chemicals were 94.88%-96.24%. The analytical results for the shells of two bivalves from Bohai Bay showed this pretreatment method is suitable for the determination of perfluoro sulfonated acids (PFSAs) in shells. Concentrations of PFSAs in the shells ranged from < LOD-0.70 ng/g, which were an order of magnitude lower than those in the soft tissues of these bivalves.

Journal Article

Abstract  Thyroid hormones (TH) are critical for growth and development and particularly brain development. There are numerous environmental agents that lead to marginal reductions of circulating TH. Although it is clear that severe developmental hypothyroidism is profoundly detrimental to neurodevelopment, there is less information regarding the consequences of modest degrees of thyroid. The impact of low level TH disruptions induced by environmental contaminants has not been defined. This paper is a synopsis from four invited speakers who presented at the 13th International Neurotoxicology Association meeting held in Xi'an, China during the summer of 2011. An overview of the role of TH in brain development and a review of human and animal data on the neurological sequelae of disruption of the thyroid axis in the pre- and early post-natal periods were presented by Mary Gilbert and Joanne Rovet. Iodine deficiency, a common cause of TH insufficiency and mental retardation in many countries, including China, was addressed by Zupei Chen. In this presentation the current incidence of iodine deficiency and neurological outcome in China and the efficacy of recently implemented iodinization programs to eliminate this cause of mental retardation were reviewed. Joanne Rovet described the impact of TH disruption during pregnancy and under conditions of congenital hypothyroidism. Children born with normal thyroid function, but who experienced TH insufficiency in the womb, display subtle cognitive impairments and abnormalities in brain imaging. Despite early detection and treatment, deficiencies also exist in children born with thyroid disorders. Different patterns of cognitive effects result from prenatal versus postnatal TH insufficiency. Mary Gilbert reported on the effects of environmental contaminants with thyroid disrupting action on brain development in animals. Results of neurophysiological, behavioral, structural and molecular alterations that accompany modest perturbations of the thyroid axis were reviewed. Noriyuki Koibuchi described molecular targets of TH-mediated signalling accompanying exposure to persistent organic pollutants. Both polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are prevalent environmental contaminants that disrupt TH signalling at the receptor level. This action by these chemical classes could contribute to the negative impact of these chemicals on brain function. In summary, epidemiological, preclinical and animal research has clearly identified the critical role of TH in brain development. Additional work is required to understand the impact of low level perturbations of the thyroid axis to evaluate the risk associated with environmental contaminants with thyroid action.

Journal Article

Abstract  The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

Journal Article

Abstract  Short-chain perfluoroalkyl acids (PFAAs), which have less than seven fluorinated carbons, have been introduced as substitutes for eight-carbon homologue products. In this study, water, sediment, and biological samples (fish and plant) were collected from Tangxun Lake, which is located near a production base of the fluorochemical industry in Wuhan, China. Perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) were the predominant PFAAs in surface water, with average concentrations of 3660 ng/L and 4770 ng/L, respectively. However, perfluorooctane sulfonate (PFOS) was the most abundant PFAA in sediments, with an average concentration of 74.4 ng/g dw. The organic carbon normalized distribution coefficients (KOC) indicated that short-chain PFAAs (CF2 < 7) tended to have lower adsorption potentials than PFOS, perfluorooctanoic acid (PFOA), and longer perfluoroalkyl chain compounds. PFBS and PFBA could transport to a farther distance in the horizontal direction along the water flow and infiltrate into deeper depths in the vertical direction. However, levels of PFOS and PFOA in water dropped exponentially along the current, and their proportions were decreased gradually with the increasing depth in sediment cores. Furthermore, values of log bioconcentration factor (BCF) of the short-chain PFAAs were all relatively low (<1), indicating no bioaccumulation potentials for short-chain PFAAs in aquatic species. [PUBLICATION ABSTRACT]

Journal Article

Abstract  Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC-MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values<LOD considered as 0), high freshwater fish consumers appear as the most exposed to PFOS (7.5ng.kg(-1) bw.d(-1)), PFUnA (1.3ng.kg(-1) bw.d(-1)), PFDA (0.4ng.kg(-1) bw.d(-1)) and PFHpS (0.03ng.kg(-1) bw.d(-1)) while high seafood consumers appear as the most exposed to PFOA (1.2ng.kg(-1) bw.d(-1)), PFNA (0.2ng.kg(-1) bw.d(-1)) and PFHxS (0.06ng.kg(-1) bw.d(-1)). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals.

Journal Article

Abstract  The distribution in water and sediment, the sources/sinks and the risk of perfluorinated compounds (PFCs) in Lake Taihu, China were investigated. The total PFCs concentration was 164 to 299ngL(-1) in water and 5.8 to 35ngg(-1) (dw) in sediment. The highest concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in water were 29.2ngL(-1) and 136ngL(-1). PFOS was largely associated with sediment, whereas short chain PFCs predominated in water. The partition coefficient (Kd) was positively correlated with the organic carbon fraction (ƒoc) for PFOS but not for the other PFCs. The organic carbon normalized partition coefficient (Koc) increased by 0.51 log units for each additional CF2 moiety from perfluoro-butanesulfonate (PFBS) to PFOS. For the same chain length but different functional groups, the log Koc of PFOS was 1.35 units higher than PFOA. PFOS exhibited the highest affinity for sediment through the partition mechanism, and ƒoc affected the sediment as a sink of PFOS. Although there was no immediate health impact by the intake of the water alone, the consumption of aquatic products may cause potential health risks for animals/humans on the time scale of months to years. The relationship between the concentration, water-sediment distribution, bioaccumulation and toxicity should be considered in determining the water standards of PFCs.

Journal Article

Abstract  Perfluorinated chemicals (PFCs) are distributed throughout the environment. In the case of perfluorinated alkyl carboxylates and sulfonates, they can be classified as persistent organic pollutants since they are resistant to environmentally relevant reduction, oxidation, and hydrolytic processes. With this in mind, we report on the reductive defluorination of perfluorobutanoate, PFBA (C(3)F(7)CO(2)(-)), perfluorohexanoate, PFHA (C(5)F(11)CO(2)(-)), perfluorooctanoate, PFOA (C(7)F(15)CO(2)(-)), perfluorobutane sulfonate, PFBS (C(4)F(9)SO(3)(-)), perfluorohexane sulfonate, PFHS (C(6)F(13)SO(3)(-)), and perfluorooctane sulfonate, PFOS (C(8)F(17)SO(3)(-)) by aquated electrons, e(aq)(-), that are generated from the UV photolysis (lambda = 254 nm) of iodide. The ionic headgroup (-SO(3)(-) vs -CO(2)(-)) has a significant effect on the reduction kinetics and extent of defluorination (F index = -[F(-)](produced)/[PFC](degraded)). Perfluoroalkylsulfonate reduction kinetics and the F index increase linearly with increasing chain length. In contrast, perfluoroalkylcarboxylate chain length appears to have a negligible effect on the observed kinetics and the F index. H/F ratios in the gaseous fluoro-organic products are consistent with measured F indexes. Incomplete defluorination of the gaseous products suggests a reductive cleavage of the ionic headgroup occurs before complete defluorination. Detailed mechanisms involving initiation by aquated electrons are proposed.

Journal Article

Abstract  Perfluorinated compounds (PFCs) are widely used in everyday life and one of the main recipients of these compounds is waste water treatment plants (WWTPs). Due to the structure and physicochemical properties of PFCs, these compounds could be redistributed from influent water to sludge. This work reports a new validated protocol for the analysis of 13 perfluorinated acids, 4 perfluorosulfonates and the perfluorooctanesulfonamide. The present work has been focused to develop a sensitive and robust method for the analysis of 18 PFCs in sewage sludge, based on pressurized solvent extraction (PSE) followed by solid phase extraction (SPE) clean-up, analytes separation by liquid chromatography and analysis in a hybrid quadrupole-linear ion trap mass spectrometer (LC-QLiT-MS/MS) working in single reaction monitoring (SRM) mode. The final methodology was validated using a blank sewage sludge fortified at different concentration levels. The method limits of detection were ranging in general from 15 to 79 ng/kg. These values were comparable to the decision limit (CCα) and the detection capability (CCβ), which were 17-1134 ng/kg and 18-1347 ng/kg, respectively. The percentage of recovery was from 79 to 111% in the most cases at different spiked levels. Finally, the repeatability of the method was in the range 4% (PFOS and PFOA) to 25% (RSD %). In order to evaluate the applicability of the method, 5 sludge samples were analyzed. The results showed that the 18 PFCs were present in all samples. However, the concentrations for most of them were below the limits of quantification. The compound present at higher concentrations was perfluorooctanesulfonate (PFOS), which was in concentrations from 53.0 to 121.1 μg/kg. The other PFCs were at concentrations between 0.3 and 30.3 μg/kg.

Journal Article

Abstract  Interactions of perfluoroalkyl acids (PFAAs) with tissue and serum proteins likely contribute to their tissue distribution and bioaccumulation patterns. Protein-water distribution coefficients (K(PW) ) based on ligand associations with bovine serum albumin (BSA) as a model protein were recently proposed as biologically relevant parameters to describe the environmental behavior of PFAAs, yet empirical data on such protein binding behavior are limited. In the present study, associations of perfluoroalkyl carboxylates (PFCAs) with two to 12 carbons (C₂-C₁₂) and perfluoroalkyl sulfonates with four to eight carbons (C₄, C₆, and C₈) with BSA are evaluated at low PFAA:albumin mole ratios and various solution conditions using equilibrium dialysis, nanoelectrospray ionization mass spectrometry, and fluorescence spectroscopy. Log K(PW) values for C₄ to C₁₂ PFAAs range from 3.3 to 4.3. Affinity for BSA increases with PFAA hydrophobicity but decreases from the C₈ to C₁₂ PFCAs, likely due to steric hindrances associated with longer and more rigid perfluoroalkyl chains. The C₄-sulfonate exhibits increased affinity relative to the equivalent chain-length PFCA. Fluorescence titrations support evidence that an observed dependence of PFAA-BSA binding on pH is attributable to conformational changes in the protein. Association constants determined for perfluorobutanesulfonate and perfluoropentanoate with BSA are on the order of those for long-chain PFAAs (K(a) ∼10⁶/M), suggesting that physiological implications of strong binding to albumin may be important for short-chain PFAAs.

Journal Article

Abstract  Perfluorinated compounds (PFCs) are a group of anthropogenic chemicals containing diverse functional groups and chain lengths. They are known to be persistent and bioaccumulative explaining their worldwide environmental presence. The toxicological information on these chemicals is still incomplete and insufficient to assess their environmental impact and structure-activity relationship. In the present study, the developmental effects of PFOS (perfluorooctane sulfonate, C8), PFOA (perfluorooctanoic acid, C8), PFBS (perfluorobutane sulfonate, C4) and PFBA (perfluorobutanoic acid, C4) were evaluated in zebrafish embryos (Danio rerio). The different chain lengths and functional groups of the selected chemicals made it possible to determine the structure-activity relationship of these compounds. PFCs with longer chain lengths (C8) tend to be more toxic than PFCs with shorter chain lengths (C4). Comparison based on the functional groups of compounds with the same chain length indicates that PFCs with a sulfonate group have a larger toxic potential than the ones with a carboxyl group. Furthermore, exposure to the different PFCs resulted in some general effects, such as deformations of the tail and an uninflated swim bladder, as well as in more specific effects which might be related to the structure of the tested chemicals. Oedemas and effects on length could only be detected in 8-carbon PFCs while malformations of the head were a more specific action of the sulfonated PFCs. Effects on hatching rate and success were found in PFOA exposed embryos and heart rates were affected after exposure to PFOS, PFOA and PFBS.

Journal Article

Abstract  Perfluorinated compounds (PFCs) are environmentally widespread, persistent, and bioaccumulative chemicals with multiple toxicities reported in experimental models and wildlife, including immunomodulation. The two most commonly detected compounds, which also generally occur in the highest concentrations in environmentally exposed organisms, are perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). PFOA and PFOS have been reported to alter inflammatory responses, production of cytokines, and adaptive and innate immune responses in rodent models, avian models, reptilian models, and mammalian and nonmammalian wildlife. Mounting evidence suggests that immune effects in laboratory animal models occur at serum concentrations below, within the reported range, or just above those reported for highly exposed humans and wildlife. Thus, the risk of immune effects for humans and wildlife exposed to PFCs cannot be discounted, especially when bioaccumulation and exposure to multiple PFCs are considered. This review contains brief descriptions of current and recently published work exploring immunomodulation by PFOA, PFOS, and other PFCs in rodent models, alternative laboratory models, and wildlife.

Journal Article

Abstract  PURPOSE: Due to their high water solubilities and mobilities, persistent, polar perfluorinated compounds (PFCs) such as perfluorinated carboxylates and sulfonates are likely to end up in the oceans. In part 1 of this study, their distribution in North and Baltic Sea water is reported, being of special interest because these seas are surrounded by highly industrialized countries with high population densities.

METHODS: A combination of solid-phase extraction and liquid chromatography coupled with tandem mass spectrometry was used after optimisation to determine nine PFCs with chain lengths of C(4) to C(10) in water samples at ultra-trace levels.

RESULTS: The observed concentration distribution and gradients were explained by oceanographic mixing processes and currents. The big rivers were identified as major input sources. At the mouth of the river Elbe, concentrations of 9 ng/L were observed for perfluorooctanoate (PFOA), and 8 ng/L for perfluorooctylsulfonate (PFOS); all other PFC concentrations ranged from 0.6 to 1.7 ng/L. At coastal stations, concentrations decreased to 3.8 ng/L (PFOA) and 1.8 ng/L (PFOS), dropping to 0.13 and 0.09 ng/L, respectively, towards the open sea. Along the Dutch coast, high perfluorobutylsulfonate concentrations (3.9 ng/L) were observed as regional characteristics. In the Baltic Sea, fairly even PFC distributions with low gradients were observed. Again, PFOA and PFOS were the major compounds (up to 1.1 and 0.9 ng/L).

CONCLUSION: The results underline the necessity to include PFCs in marine monitoring programs. Water was found to be a good matrix for monitoring environmental levels, sources, and transport pathways of PFCs.

Journal Article

Abstract  Epidemiological studies and case reports show that even a relatively minor degree of maternal hypothyroxinemia during the first half of gestation is potentially dangerous for optimal fetal neurodevelopment. Our experimental approach was designed to result in a mild and transient period of maternal hypothyroxinemia at the beginning of corticogenesis. Normal rat dams received the goitrogen 2-mercapto-1-methyl-imidazole for only 3 d, from embryonic d 12 (E12) to E15. Maternal thyroid hormones decreased transiently to 70% of normal serum values, without clinical signs of hypothyroidism. Dams were injected daily with 5-bromo-2'-deoxyuridine (BrdU) during 3 d, from E14-E16 or E17-E19. Their pups were tested for audiogenic seizure susceptibility 39 d after birth (P39) and killed at P40. Cells that had incorporated BrdU were identified by immunocytochemistry, and quantified: numerous heterotopic cells were found, whether labeled at E14-E16 or E17-E19, that were identified as neurons. The cytoarchitecture and the radial distribution of BrdU-labeled neurons was significantly affected in the somatosensory cortex and hippocampus of 83% of the pups. The radial distribution of gamma-aminobutyric acidergic neurons was, however, normal. The infusion of dams with T4 between E13 and E15 avoided these alterations, which were not prevented when the T4 infusion was delayed to E15-E18. In total, 52% of the pups born to the goitrogen-treated dams responded to an acoustic stimulus with wild runs, followed in some by seizures. When extrapolated to man, these results stress the need for prevention of hypothyroxinemia before midpregnancy, however moderate, and whichever the underlying cause.

Journal Article

Abstract  Epidemiological studies from both iodine-sufficient and -deficient human populations strongly suggest that early maternal hypothyroxinemia (i.e., low circulating free thyroxine before onset of fetal thyroid function at midgestation) increases the risk of neurodevelopmental deficits of the fetus, whether or not the mother is clinically hypothyroid. Rat dams on a low iodine intake are hypothyroxinemic without being clinically hypothyroid because, as occurs in pregnant women, their circulating 3,5,3'-triiodothyronine level is usually normal. We studied cell migration and cytoarchitecture in the somatosensory cortex and hippocampus of the 40-day-old progeny of the iodine-deficient dams and found a significant proportion of cells at locations that were aberrant or inappropriate with respect to their birth date. Most of these cells were neurons, as assessed by single- and double-label immunostaining. The cytoarchitecture of the somatosensory cortex and hippocampus was also affected, layering was blurred, and, in the cortex, normal barrels were not formed. We believe that this is the first direct evidence of an alteration in fetal brain histogenesis and cytoarchitecture that could only be related to early maternal hypothyroxinemia. This condition may be 150-200 times more common than congenital hypothyroidism and ought to be prevented both by mass screening of free thyroxine in early pregnancy and by early iodine supplementation to avoid iodine deficiency, however mild.

DOI
Journal Article

Abstract  Per- and polyfluoroalkyl substances (PFAS) are found ubiquitously in wastewater treatment plants (WWTPs) due to their multiple sources in industry and consumer products. In Australia, limited spatial data are available on PFAS levels in WWTPs influent, while no temporal data have been reported. The aim of this study was to investigate the occurrence and temporal trend of PFAS in the influent of two large WWTPs in Australia (WWTP A and B) over a four-year period. Daily influent samples were collected over one week at different seasons from 2014 to 2017. Eleven perfluoroalkyl acids (PFAA) (i.e. seven perfluoroalkyl carboxylic acids (PFCAs) and four perfluoroalkyl sulfonic acids (PFSA)) were detected with mean S11PFAA concentrations of 57?±?3.3–94?±?17?ng/L at WWTP A, and 31?±?6.1–142?±?73?ng/L at WWTP B. The highest mean concentrations were observed for perfluorohexanoate (PFHxA) (20?±?2?ng/L) in WWTP A, and perfluorooctane sulfonate (PFOS) (17?±?13?ng/L) in WWTP B. The precursor 6:2 fluorotelomer sulfonate was detected over five sampling periods from Aug 2016 to Oct 2017, with mean concentrations of 37?±?18–138?±?51?ng/L for WWTP A and 8.8?±?4.5–29?±?5.1?ng/L for WWTP B. Higher concentration of 6:2 FTS (1.8–11 folds) than those of PFOA and PFOS in WWTP A indicate a likely substitution of C8 PFAA by fluorotelomer-based PFAS in this catchment. Temporal trends (annual and seasonal) in per-capita mass load were observed for some PFAA, increasing for PFPeA, PFHxA, PFHpA, PFNA, and PFHxS, while decreasing for PFBS and PFOS in either WWTPs. Notably, elevated levels of PFOS in October 2017 were observed at both WWTPs with the highest per capita mass load of up to 67?µg/day/inhabitant. For some PFAS release trends, longer sampling periods would be required to achieve acceptable statistical power.

Journal Article

Abstract  Epidemiologic evidence regarding the effects of in utero exposure to per- and polyfluoroalkyl substances (PFAS), particularly short-chain PFAS, on fetal reproductive hormones is limited and inconsistent. This study aimed to assess the relationship between maternal PFAS exposure and fetal reproductive hormones. A total of 752 mother-infant pairs who were recruited in the Shanghai Birth Cohort Study between 2013 and 2016 were selected. We quantified 10 PFAS, including two short-chain PFAS congeners (perfluorobutanesulfonate, PFBS and perfluoroheptanoic acid, PFHpA), in maternal blood plasma in early pregnancy. Dehydroepiandrosterone sulfate (DHEA-S), sex hormone-binding globulin (SHBG), luteinizing hormone (LH), follicle-stimulating hormone (FSH) and total testosterone (TT) were measured in the umbilical cord blood using chemiluminescence kits. Free androgen index (FM) was calculated by TT divided by SHBG. Multiple linear regression found that one In-unit increase in maternal PFBS was associated with decreases in FSH (-0.159; 95% CI: -0.290, -0.029), LH (-0.113; 95% CI: -0.221, -0.004), and FM (-0.009; 95% CI: -0.017, -0.001). In addition, PFHpA showed negative associations with LH (-0.154; 95% CI: -0.297, -0.011) and FM (-0.008; 95% CI: -0.014, -0.002). When PFAS were analyzed in quartiles, significant negative associations were observed between PFBS and FSH, and between PFHpA and FAL Overall, prenatal exposure to PFBS and PFHpA was associated with the disturbance of fetal gonadotropins as well as free androgen level in this prospective cohort, suggesting that the reproductive toxicity of short-chain PFAS may not be neglected.

Journal Article

Abstract  The findings of per- and polyfluoroalkyl substances (PFAS) in humans and the environment all over the world have raised concerns and public awareness for this group of man-made chemicals. In the last three decades, this led to different regulatory restrictions for specific PFAS as well as shifts in the production and usage of these substances. In this study, we analyzed the PFAS levels of 100 human blood plasma samples collected from 2009 to 2019 for the German Environmental Specimen Bank (ESB) to further elucidate the time course of exposure towards this substance group as shown by Schröter-Kermani et al., (2013) with samples from 1982 to 2010. A spectrum of 37 PFAS, including perfluorocarboxylic (PFCA) and -sulfonic acids (PFSA) as well as potential precursors and substitutes like ADONA, GenX or F-53B was analyzed by UHPLC coupled with high-resolution mass spectrometry. Validation was successful for 33 of the substances. The two legacy substances perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were detected in every sample of the 2009-2019 dataset and showed the highest concentrations with ranges of 0.27-14.0 ng/mL and 1.21-14.1 ng/mL, respectively. A significant portion of total PFOS analytes was present as branched isomers (mean: 34 ± 7%). High detection frequencies of 95% and 82% were also found for perfluorohexane sulfonic acid (PFHxS) and perfluorononanoic acid (PFNA), respectively, but in lower concentrations (PFHxS:

Journal Article

Abstract  PURPOSE: Perfluorinated chemicals are widespread pollutants persistent in the environment with links to some major health issues. The two main compounds, perfluoro-octanoic acid (PFOA) and perfluoro-alkyl sulphonate (PFOS), were recently classified as carcinogenetic and thus their use has been restricted. Short-chain PFCs were recently developed as an alternative, but no data regarding the possible endocrine toxicities of these compounds are available. Aim of this study was to investigate whether short-chain PFCs could jeopardize thyroid cell viability and/or interfere with the functional effect TSH.

METHODS: Fisher rat thyroid line-5 (FRTL-5) was treated with increasing concentrations of PFOA, PFOS, perfluorobutanesulfonic acid (PFBS), perfluorobutanoic acid (PFBA), pentafluoropropionic anhydride (PFPA), perfluoropentanoic acid (PFPeA) to evaluate modifications in cell viability and TSH-stimulated cAMP production.

RESULTS: Neither long nor short-chain PFCs affected cell viability (apart from PFOS 100 µM), or interfered with cAMP production.

CONCLUSIONS: The results of the present study demonstrate for the first time that short-chain PFCs have no acute cytotoxic effect on thyroid cells in vitro and that cAMP production is not modulated by any of the tested PFCs.

Journal Article

Abstract  Acid solutions exhibit proton-conductivity, while pure Proton Conductors are usually dry solids. Typical materials are polymers or ceramic. Typically, the pores in practical materials are small such that protons dominate direct current and transport of cations or bulk solvent is prevented. Water ice is a common example of a pure proton conductor, albeit a relatively poor one. Proton conduction has also been observed in the new type of proton conductors for fuel cells-protic organic ionic plastic crystals (POIPCs), such as 1,2,4-triazolium perfluorobutanesulfonate and imidazolium methanesulfonate. This research work evaluates the properties of proronic conductors by using impedance spectroscopy. © 2019, Interamerican Society for Electron Microscopy (CIASEM). All rights reserved.

Journal Article

Abstract  The application of the organic-diffusive gradients in thin films (o-DGT) passive sampling technique for the monitoring of per- and polyfluoroalkyl substances (PFAS) in the environment is still limited. Six common PFAS with different chain lengths were evaluated in water by o-DGT. Measured diffusion coefficients (D) in agarose and polyacrylamide diffusive gels ranged from 4.55-8.63 × 10-6 cm2 s-1 and 3.85-7.00 × 10-6 cm2 s-1 at 23 °C, respectively. Experimental sampling rates (Rs) for both agarose- and polyacrylamide-WAX sampler configurations were within 22% relative error of D-based Rs for four of the PFAS. Larger differences for perfluorobutanesulfonic acid (PFBS) and perfluoroundecanoic acid (PFUnDA) ranged from 36% to 56%. In general, in-situ Rs can be predicted using measured D-values for perfluorinated alkyl acids. The mass accumulation of six PFAS in two o-DGT configurations was linear over 21 days (R2 ≥ 0.97). Diffusion and uptake of o-DGT depended on the gel type and specific PFAS. Field demonstrations of o-DGT with WAX and HLB binding gels and polyacrylamide diffusive gels (not prone to biodegradation) found 0.3-19.5 ng L-1 of PFAS in rivers near industrial areas around Guangzhou and Foshan, China, with no apparent differences between the two co-deployed samplers. This study demonstrates that the configurations of o-DGT tested provide a cost-effective monitoring tool for measuring perfluorinated alkyl acids in aquatic systems, in particular the four PFAS for which reasonable correlations were observed.

Journal Article

Abstract  Since the approval of recombinant human insulin by FDA in 1982, more than 200 proteins are currently available for pharmaceutical use to treat a wide range of diseases. However, innovation is still required to develop effective approaches for drug delivery. Our aim is to investigate the potential use of fluorinated ionic liquids (FILs) as drug delivery systems (DDS) for therapeutic proteins. Some initial parameters need to be assessed before further studies can proceed. This work evaluates the impact of FILs on the stability, function, structure and aggregation state of lysozyme. Different techniques were used for this purpose, which included differential scanning fluorimetry (DSF), spectrophotometric assays, circular dichroism (CD), dynamic light scattering (DLS), and scanning and transmission electron microscopy (SEM/TEM). Ionic liquids composed of cholinium-, imidazolium- or pyridinium- derivatives were combined with different anions and analysed at different concentrations in aqueous solutions (below and above the critical aggregation concentration, CAC). The results herein presented show that the addition of ionic liquids had no significant effect on the stability and hydrolytic activity of lysozyme. Moreover, a distinct behaviour was observed in DLS experiments for non-surfactant and surfactant ionic liquids, with the latter encapsulating the protein at concentrations above the CAC. These results encourage us to further study ionic liquids as promising tools for DDS of protein drugs.

Journal Article

Abstract  A fast on-line analytical method based on turbulent flow chromatography (TFC) in combination with tandem mass spectrometry has been applied for the first time for the analysis of eighteen perfluoroalkyl substances (PFASs), in cord blood. A simple and rapid sample pre-treatment was optimised consisting on protein precipitation of 100 μL of sample with acetonitrile (1:1) followed by centrifugation during 10 min. The method was adapted to be sensitive enough and robust with minimum sample injection volume requirements (20 μL). The optimised methodology presented method limits of detection (MLOD) between 0.031 and 0.76 μg/L, detection capabilities (CCα) in the range between 0.005 and 0.99 μg/L and decision limits (CCβ) ranging from 0.006 to 1.16 μg/L. The recoveries in blank blood were calculated by spiking experiments with a mixture of 18 PFASs and established between 70 and 126% for most of compounds. Isotopic dilution was carried out for quantification of selected analytes. In-house validation of this new approach was carried out according to the requirements in the 2002/657/EC Decision. Finally the good applicability of this new approach was proved by the analysis of 60 cord blood samples from two different Mediterranean cities, Barcelona (Spain) and Heraklion (Greece). Ions perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) were found at highest concentration and the more frequently compounds were PFHxS, PFOS and perfluorooctanoic acid (PFOA). The newly developed method proved to be suitable for large-scale epidemiologic studies, and to the data on PFASs exposure during pregnancy.

  • <<
  • 1 of 37
  • >>
Filter Results