PFHpA

Project ID

2623

Category

PFAS

Added on

Aug. 10, 2017, 4:59 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Eleven perfluorinated alkyl acids (PFAAs) were analyzed in plasma from a total of 600 American Red Cross adult blood donors from six locations in 2010. The samples were extracted by protein precipitation and quantified by using liquid chromatography tandem mass spectrometry (HPLC/MS/MS). The anions of the three perfluorosulfonic acids measured were perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS). The anions of the eight perfluorocarboxylic acids were perfluoropentanoate (PFPeA), perfluorohexanoate (PFHxA), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA). Findings were compared to results from different donor samples analyzed at the same locations collected in 2000-2001 (N = 645 serum samples) and 2006 (N = 600 plasma samples). Most measurements in 2010 were less than the lower limit of quantitation for PFBS, PFPeA, PFHxA, and PFDoA. For the remaining analytes, the geometric mean concentrations (ng/mL) in 2000-2001, 2006, and 2010 were, respectively, PFHxS: (2.25, 1.52, 1.34); PFOS (34.9, 14.5, 8.3); PFHpA (0.13, 0.09, 0.05); PFOA (4.70, 3.44, 2.44); PFNA (0.57, 0.97, 0.83); PFDA (0.16, 0.34, 0.27), and PFUnA (0.10, 0.18, 0.14). The percentage decline (parentheses) in geometric mean concentrations from 2000-2001 to 2010 were PFHxS (40%), PFOS (76%), and PFOA (48%). The decline in PFOS suggested a population halving time of 4.3 years. This estimate is comparable to the geometric mean serum elimination half-life of 4.8 years reported in individuals. This similarity supports the conclusion that the dominant PFOS-related exposures to humans in the United States were greatly mitigated during the phase-out period.

DOI
Journal Article

Abstract  Perfluorooctanoic acid (PFOA) is an emerging environmental pollutant attracting significant attention due to its global distribution, high persistence, and bioaccumulation properties. In this study, the degradation of aqueous PFOA at different temperatures was examined using heat-activated persulfate. Using this approach, 93.5% of PFOA was degraded after 30 h at 85 degrees C with 43.6% of F- yield, and the shorter chain length compounds (PFHpA (C6F13COOH), PFHxA (C5F11COOH), PFPeA (C4F9COOH), and PFBA (C3F2COOH)) were observed as degradation intermediates. The sequential degradation mechanism of losing one CF2 unit from PFOA and its intermediates on a step-by-step basis were observed. Controlled temperature kinetics studies yielded an activation energy of approximately 60 kJ/mol for the degradation of PFOA by heat-activated persulfate. However, at elevated temperatures, excess persulfate is needed for efficient PFOA degradation, presumably due to more intensive SO4 center dot- scavenging. Lower reaction pH was generally found to inhibit PFOA degradation, presumably due to the more prevalent radical-to-radical interactions. (C) 2011 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Elimination in urine and feces was compared between four perfluorinated fatty acids (PFCAs) with different carbon chain length. In male rats, perfluoroheptanoic acid (PFHA) was rapidly eliminated in urine with the proportion of 92% of the dose being eliminated within 120 h after an intraperitoneal injection. Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) was eliminated in urine with the proportions of 55, 2.0 and 0.2% of the dose, respectively. By contrast, four PFCAs were eliminated in feces with the proportion of less than 5% of the dose within 120 h after an injection. In female rats, the proportions of PFOA and PFNA eliminated in urine within 120 h were 80% and 51% of the dose, respectively, which were significantly higher compared with those in male rats. There was the tendency that PFCA with longer carbon chain length is less eliminated in urine in both male and female rats. Fecal elimination of PFCAs was not different between PFCAs in female rats and comparable to those in male rats. The rates of biliary excretion of PFCAs in male rats were slower than those in female rats. Sex-related difference in urinary elimination of PFOA was abolished when male rats had been castrated. On the contrary, treatment with testosterone suppressed the elimination of PFOA in urine in both castrated male rats and female rats. The effect of testosterone was in a time- and dose-dependent manner. These results suggest that PFCAs are distinguished by their carbon chain length by a renal excretion system, which is regulated by testosterone.

Journal Article

Abstract  BIOSIS COPYRIGHT: BIOL ABS. This meeting contains abstracts of 42 papers, written in English, covering chemical studies of toxic substances and experimental studies in animals and tissue culture, including enzymology.

Journal Article

Abstract  Perfluoroalkyl substances (PFASs) are protein-binding blood-accumulating contaminants that may have detrimental toxicological effects on the early phases of mammalian development. To enable an evaluation of the potential health risks of PFAS exposure for polar bears (Ursus maritimus), an exposure assessment was made by examining plasma levels of PFASs in polar bear mothers in relation to their suckling cubs-of-the-year (~4 months old). Samples were collected at Svalbard in 1998 and 2008, and we investigated the between-year differences in levels of PFASs. Seven perfluorinated carboxylic acids (∑₇PFCAs: PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, and PFTrDA) and two perfluorinated sulfonic acids (∑₂PFSAs: PFHxS and PFOS) were detected in the majority of the mothers and cubs from both years. In mothers and cubs, most PFCAs were detected in higher concentrations in 2008 than in 1998. On the contrary, levels of PFOS were lower in 2008 than in 1998, while levels of PFHxS did not differ between the two sampling years. PFOS was the dominating compound in mothers and cubs both in 1998 and in 2008. Concentration of PFHpA did not differ between mothers and cubs, while concentrations of PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFHxS, and PFOS were higher in mothers than in their cubs. Except from PFHpA, all compounds correlated significantly between mothers and their cubs. The mean cub to mother ratios ranged from 0.15 for PFNA to 1.69 for PFHpA. On average (mean±standard error of mean), the levels of ∑₇PFCAs and ∑₂PFSAs in cubs were 0.24±0.01 and 0.22±0.01 times the levels in their mothers, respectively. Although maternal transfer appears to be a substantial source of exposure for the cubs, the low cub to mother ratios indicate that maternal transfer of PFASs in polar bears is relatively low in comparison with hydrophobic contaminants (e.g. PCBs). Because the level of several PFASs in mothers and cubs from both sampling years exceeded the levels associated with health effects in humans, our findings raise concern on the potential health effects of PFASs in polar bears from Svalbard. Effort should be made to examine the potential health effects of PFASs in polar bears.

Journal Article

Abstract  Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC-MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination values<LOD considered as 0), high freshwater fish consumers appear as the most exposed to PFOS (7.5ng.kg(-1) bw.d(-1)), PFUnA (1.3ng.kg(-1) bw.d(-1)), PFDA (0.4ng.kg(-1) bw.d(-1)) and PFHpS (0.03ng.kg(-1) bw.d(-1)) while high seafood consumers appear as the most exposed to PFOA (1.2ng.kg(-1) bw.d(-1)), PFNA (0.2ng.kg(-1) bw.d(-1)) and PFHxS (0.06ng.kg(-1) bw.d(-1)). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals.

Journal Article

Abstract  Perfluorinated chemicals (PFCs) are distributed throughout the environment. In the case of perfluorinated alkyl carboxylates and sulfonates, they can be classified as persistent organic pollutants since they are resistant to environmentally relevant reduction, oxidation, and hydrolytic processes. With this in mind, we report on the reductive defluorination of perfluorobutanoate, PFBA (C(3)F(7)CO(2)(-)), perfluorohexanoate, PFHA (C(5)F(11)CO(2)(-)), perfluorooctanoate, PFOA (C(7)F(15)CO(2)(-)), perfluorobutane sulfonate, PFBS (C(4)F(9)SO(3)(-)), perfluorohexane sulfonate, PFHS (C(6)F(13)SO(3)(-)), and perfluorooctane sulfonate, PFOS (C(8)F(17)SO(3)(-)) by aquated electrons, e(aq)(-), that are generated from the UV photolysis (lambda = 254 nm) of iodide. The ionic headgroup (-SO(3)(-) vs -CO(2)(-)) has a significant effect on the reduction kinetics and extent of defluorination (F index = -[F(-)](produced)/[PFC](degraded)). Perfluoroalkylsulfonate reduction kinetics and the F index increase linearly with increasing chain length. In contrast, perfluoroalkylcarboxylate chain length appears to have a negligible effect on the observed kinetics and the F index. H/F ratios in the gaseous fluoro-organic products are consistent with measured F indexes. Incomplete defluorination of the gaseous products suggests a reductive cleavage of the ionic headgroup occurs before complete defluorination. Detailed mechanisms involving initiation by aquated electrons are proposed.

Journal Article

Abstract  Open-tubular CEC and non-aqueous CE (NACE) methods were developed for the analysis of six pharmaceutical compounds and their respective process-related impurities, comprising 22 analytes in total with a range of functional groups and lipophilicities. These methods were assessed for orthogonality of analyte separation with respect to existing CZE-ESI-MS and HPLC-ESI-MS methods, in order to complement a generic analytical strategy for impurity profiling of pharmaceutical compounds. Open-tubular CEC, using etched and chemically modified capillaries, induced weak reversed-phase-type interactions between some of the analytes and the bonded phases (0.811<k(app)<0.996). However, the separations were primarily influenced by electrophoretic mobility rather than chromatographic retention, and hence no significant change in selectivity compared with CZE was observed. NACE optimum separating conditions were 10 mM ammonium acetate-100 mM acetic acid in methanol far UV acetonitrile (1/1 v/v ratio). The ion-pair reagents triethylamine or dimethylhexylamine did not induce further changes in selectivity, but tridecafluoroheptanoic acid significantly modified the electrophoretic mobility of bases. The results indicate that one of three generic CZE methods previously reported should be replaced by NACE, due to its improved separation capabilities. The NACE-ESI-MS method complements the two CZE-ESI-MS and the four HPLC-ESI-MS methods recommended in a previous publication; these together form the basis of a generic approach to impurity profiling of pharmaceutical compounds.

Journal Article

Abstract  Perfluorooctanesulfonate (PFOS) at 1.6-39 ng/g ww and 4.8-200 pg/mL, respectively, perfluorooctanoate (PFOA) at 0.06-0.28 ng/g ww and<0.05-1.8 pg/mL, and perfluorodecanoate (PFDA) at 0.13-0.57 ng/g ww and 0.05-1.8 pg/mL, were detected in all specimens of European Beaver's (Castor fiber) liver as well as in whole blood of Cod (Gadus morhua), Velvet Scoter (Melanitta fusca), Eider Duck (Sommateria mollisima), Long-tailed Duck (Clangula hyemalis), Razorbill (Alca torda), Red-throated Diver (Gavia stellata) sampled in Poland. At smaller concentrations and at less frequency was perfluorononanoate (PFNA) at 0.05-1.4 ng/g ww and<0.2-2 pg/mL, perfluorohexanoate (PFHxA) at 0.03-0.23 ng/g ww and<0.05-0.69 pg/mL, while perfluorohexanesulfonate (PFHxS) at 0.05-4.3 pg/mL and perfluorooctanesulfonamidoacetate (PFOSA) at 0.1-13 pg/mL were also found in Cod as well as in molluscivorous diving-ducks and fish-eating birds but not in Beaver, while perfluoroheptanoate (PFHpA) at<0.05-0.74 pg/mL was found only in Cod.

Journal Article

Abstract  Perfluorinated alkylated substances (PFAS) are of global interest due to their occurrence and persistency in the environment. This study includes surface waters and sediments for the analysis of eleven PFAS. The PFAS studied can be grouped in perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFS) and perfluoroalkyl sulfonamides (PFSA). The two most important compounds are perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). These two substances showed the most significant values for surface water samples with maximum concentrations of 21 ng l(-1) for PFOA and 37 ng l(-1) for PFOS. Sediment samples from seven Austrian lakes and the river Danube were studied. Whereas PFSA and PFS were not detected in any sediment sample PFCAs were detected in most of the lake samples in concentrations up to 1.7 microg kg(-1) dry wt. PFOA, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA) were detected in all Danube river sediment samples in concentrations varying from 0.1 up to 5.1 microg kg(-1) dry wt. For the various sampling points the proportional mass flows deriving from wastewater discharges were calculated. Whereas only up to 10% of the average flow is discharged wastewater up to more than 50% of the PFAS mass flows in the rivers can be attributed to wastewater discharges. Besides wastewater different other pathways as emissions from point sources, further degradation of precursor products, runoff from contaminated sites or surface runoff as well as dry and wet deposition have to be considered as relevant sources for PFAS contamination in surface waters.

Journal Article

Abstract  Macrophage activation contributes to adverse effects produced by a number of hepatotoxic compounds. Transcriptional profiles elicited by two macrophage activators, LPS and zymosan A, were compared to those produced by 100 paradigm compounds (mostly hepatotoxicants) using cDNA microarrays. Several hepatotoxicants previously reported to activate liver macrophages produced transcriptional responses similar to LPS and zymosan, and these were used to construct a gene signature profile for macrophage activators in the liver. Measurement of cytokine mRNAs in the same liver samples by RT-PCR independently confirmed that these compounds are associated with macrophage activation. In addition to expected effects on acute phase proteins and metabolic pathways that are regulated by LPS and inflammation, a strong induction was observed for many endoplasmic reticulum-associated stress/chaperone proteins. Additionally, many genes in our macrophage activator signature profile were well-characterized PPARalpha-induced genes which were repressed by macrophage activators. A shared gene signature profile for peroxisome proliferators was determined using a training set of clofibrate, WY 14643, diethylhexylphthalate, diisononylphthalate, perfluorodecanoic acid, perfluoroheptanoic acid, and perfluorooctanoic acid. The signature profile included macrophage activator-induced genes that were repressed by peroxisome proliferators. NSAIDs comprised an interesting pharmacological class in that some compounds, notably diflunisal, co-clustered with peroxisome proliferators whereas several others co-clustered with macrophage activators, possibly due to endotoxin exposure secondary to their adverse effects on the gastrointestinal system. While much of these data confirmed findings from the literature, the transcriptional patterns detected using this toxicogenomics approach showed relationships between genes and biological pathways requiring complex analysis to be discerned.

Journal Article

Abstract  We developed a procedure for the direct determination of dissolved free amino acids (DFAAs) in freshwater samples employing ion-pairing liquid chromatography and mass spectrometry. Our approach allowed accurate quantification of subnanomolar concentrations of DFAAs without prior concentration, derivatization or sample clean-up steps, achieving a throughput of three samples per hour. DFAAs were separated on a C-18 resin using tridecafluoroheptanoic acid as an ion-pairing agent controlling the overall retention. The relative standard deviation of DFAA measurements was <10% in samples from the mesotrophic Lake Zurich (Switzerland), and across concentrations of 0.5-500 nM. Recoveries of DFAAs ranged from 94 to 102% within the range of 0.2-10 nM. The limits of quantification for individual DFAAs varied between 50 pM to 2 nM (median, 0.5 nM). The new method was employed to compare the spatial variability of DFAA concentrations in samples obtained by two devices. Epilimnetic samples of different size (ml, 1) were collected at various spatial scales (cm, m, km) with a traditional 51 Friedinger sampler and with a custom-made multi-syringe sampling apparatus. Concentrations of total DFAAs ranged from 30 to 330 nM. Alanine, serine, glutamic acid, arginine and glycine constituted 65% of the total pool, while methionine and tryptophan occurred at sub-nM concentrations only. Concentrations of individual DFAAs varied spatially over 2 orders of magnitude. Their spatial distribution was positively skewed, as characterized by rare peaks, most strongly so for glutamate, glycine and asparagine. The composition of DFAAs significantly differed at all examined spatial scales, and this could be mainly attributed to alanine, aspartic acid, and glycine. Our new method equals or outperforms existing ones in terms of sensitivity and reproducibility, while its procedural simplicity renders it superior for the high-throughput analysis of freshwater samples. (C) 2016 Elsevier B.V. All rights reserved.

Journal Article

Abstract  Biotransformation of fluorotelomer alcohols (FTOHs) is widely considered as an additional source of perfluorocarboxylic acids (PFCAs) in environmental biota. Compared with the extensive studies conducted in animals and microbes, biotransformation pathways of FTOHs in plants are still unclear. In this study, a hydroponic experiment was conducted to investigate the uptake, translocation and metabolism of 8:2 FTOH in soybean (Glycine max L. Merrill) over 144 h. 8:2 FTOH and its metabolites were found in all parts of soybean plants. At the end of the exposure, 7:3 FTCA [F(CF2)7CH2CH2COOH] was the primary metabolite in roots and stems, while PFOA [F(CF2)7COOH] was predominant in leaves. PFOA and 7:3 FTCA in the soybean-solution system accounted for 6.01 and 5.57 mol % of the initially applied 8:2 FTOH, respectively. Low levels of PFHpA [F(CF2)6COOH] and PFHxA [F(CF2)5COOH] in solutions and soybean roots resulted from microbial metabolism and plant root uptake. Glutathione-conjugated metabolites in soybean tissues were also identified. The activities of alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase in soybean roots increased during the exposure, suggesting their roles in 8:2 FTOH metabolism in soybean. This study provides important information for a better understanding of the uptake and metabolism of FTOHs and fluorotelomer-based compounds in plants.

Journal Article

Abstract  The spatial and temporal distribution of per- and polyfluoroalkyl substances (PFASs) in the open Western Mediterranean Sea waters was investigated in this study for the first time. In addition to surface water samples, a deep water sample (1390 m depth) collected in the center of the western basin was analyzed. Perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) were detected in all samples and were the dominant PFASs found. The sum of PFAS concentrations (ΣPFASs) ranged 246-515 pg/L for surface water samples. PFASs in surface water had a relatively homogeneous distribution with levels similar to those previously measured in the Atlantic near the Strait of Gibraltar, in water masses feeding the inflow to the Mediterranean Sea. Higher concentrations of PFHxA, PFHpA and PFHxS were, however, found in the present study. Inflowing Atlantic water and river/coastal discharges are likely the major sources of PFASs to the Western Mediterranean basin. Slightly lower (factor of 2) ΣPFASs was found in the deep water sample (141 pg/L). Such a relatively high contamination of deep water is likely to be linked to recurring deep water renewal fed by downwelling events in the Gulf of Lion and/or Ligurian Sea.

Journal Article

Abstract  Perfluoroheptanoic acid was employed as a volatile micellar phase in background electrolyte for micellar electrokinetic chromatography-tandem mass spectrometry separation and determination of 15 selected naphthoyl- and phenylacetylindole- synthetic cannabinoids and main metabolites derived from JWH-018, JWH-019, JWH-073, JWH-200 and JWH-250. The influence of concentration of perfluoroheptanoic acid in background electrolytes on the separation was studied as well as the influence of perfluoroheptanoic acid on mass spectrometry detection. The background electrolyte consisted of 75 mM perfluoroheptanoic acid, 150 mM ammonium hydroxide pH 9.2 with 10% (v/v) propane-2-ol allowed micellar electrokinetic chromatography separation together with mass spectrometry identification of the studied parent synthetic cannabinoids and their metabolites. The limits of detection of studied synthetic cannabinoids and metabolites were in the range from 0.9 ng/mL for JWH-073 to 3.0 ng/mL for JWH-200 employing liquid-liquid extraction. The developed method was applied on the separation and identification of studied analytes after liquid-liquid extraction of spiked urine and serum samples to demonstrate the potential of the method applicability for forensic and toxicological purposes.

Journal Article

Abstract  The title compound, cis-di-μ-perfluoroheptanoato-κ(4)O:O'-bis[dicarbonyl(dimethyl sulfoxide-κS)ruthenium(I)](Ru-Ru), [Ru2(C7F13O2)2(C2H6OS)2(CO)4], is a sawhorse-type dinuclear ruthenium complex with two bridging perfluoroheptanoate ligands, and with two dimethyl sulfoxide (DMSO) ligands in the axial positions coordinating via the S atoms. It is a new example of a compound with an aliphatic fluorinated carboxylate ligand. The Ru-Ru bond distance of 2.6908 (3) Å indicates a direct Ru-Ru interaction. The compound is an active catalyst in transvinylation of propionic acid with vinyl acetate.

Journal Article

Abstract  Methylmalonic aciduria (MMA) is one of the most frequent organic acidurias, a class of diseases caused by enzymatic defects mainly involved in the catabolism of branched-chain amino acids. Recently, mild MMA and C4-dicarboxylyl-carnitine (C4DC-C) accumulation have been reported in patients carrying mutation in genes encoding the α-subunit (SUCLG1) and the β-subunit (SUCLA2) of the ADP-forming succinyl-CoA synthetase (SCS). We developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify in dried blood spot the two isobaric compounds of C4DC-C, succinyl-carnitine and methylmalonyl-carnitine, to allow the differential diagnosis between classical MMA and SCS-related defects. This method, with an easy liquid-phase extraction and derivatization procedure, has been validated to demonstrate the specificity, linearity, recovery, lowest limit of quantification (LLOQ), accuracy and precision for quantitative determination of blood succinyl-carnitine and methylmalonyl-carnitine. The assay was linear over a concentration range of 0.025-10 μmol/L and achieved the LLOQ of 0.025 μmol/L for both metabolites. The average slope, intercept, and coefficient of linear regression (r(2)) were respectively: 0.3389 (95% confidence interval 0.2888-0.3889), 0.0113 (95% confidence interval -0.0157 to 0.0384), 0.9995 (95% confidence interval 0.9990-1.0000) for succinyl-carnitine and 0.5699 (95% confidence interval 0.5263-0.6134), 0.0319 (95% confidence interval -0.0038 to 0.0677), 0.9997 (95% confidence interval 0.9995-1.0000) for methylmalonyl-carnitine. Within-day and between-day coefficients of variation (CV) were 1.94% and 3.19% for succinyl-carnitine and 3.21%, and 2.56 for methylmalonyl-carnitine. This method is accurate and provides a new tool to differentiate patients with classical methylmalonic acidemia from those with SCS-related defects.

Journal Article

Abstract  Amino acids extracted from a biological matrix can be resolved and measured using a 6-min per sample method through high-performance liquid chromatography with a short C18 column and rapid gradient using the ion-pairing reagent perfluoroheptanoic acid. LC-tandem mass spectrometry with multiple reaction monitoring (MRM) transitions selective for each compound allows simultaneous quantification of the 20 proteinogenic amino acids and 5 metabolically related compounds. Distinct MRM transitions were also established for selective detection of the isomers leucine/isoleucine and threonine/homoserine.

Journal Article

Abstract  This paper describes a fast method for the sensitive and selective determination of melamine in a wide range of food matrices, including several milk-based products. The method involves an extraction with aqueous 1% trichloroacetic acid before the injection of the 10-fold diluted extract into the liquid chromatography-electrospray tandem mass spectrometry (LC-ESI-MS/MS) system, using labelled melamine as the internal standard. As melamine is present in aqueous media in the cationic form, the chromatographic separation in reversed-phase LC requires the use of anionic ion-pair reagents, such as tridecafluoroheptanoic acid (THFA). This allows a satisfactory chromatographic retention and peak shape in all the types of food samples investigated. The method has been validated in six food matrices (biscuit, dry pasta and four milk-based products) by means of recovery experiments in samples spiked at 1 and 5 mg kg(-1). Average recoveries (n=5) ranged from 77% to 100%, with excellent precision (RSDs lower than 5%) and limits of detection between 0.01 and 0.1 mg kg(-1). In addition, accuracy and robustness of the method was proven in different soya-based matrices by means of quality control (QC) sample analysis. QC recoveries, at 1 and 2.5 mg kg(-1), were satisfactory, ranging from 79% to 110%. The method developed in this work has been applied to the determination of melamine in different types of food samples. All detections were confirmed by acquiring two MS/MS transitions (127>85 for quantification; 127>68 for confirmation) and comparing their ion intensity ratio with that of reference standards. Accuracy of the method was also assessed by applying it to a milk-based product and a baking mix material as part of an EU proficiency test, in which highly satisfactory results were obtained.

Journal Article

Abstract  This letter illustrates for the first time the preparation of p-methyl methacrylate/n-butyl acrylate/heptadecafluorodecyl methacrylate (p-MMA/nBA/FMA) colloidal dispersions containing up to 15% w/w FMA, which is accomplished by the utilization of biologically active phospholipids (PLs) and ionic surfactants. The use of monomer-starved conditions during emulsion polymerization and the utilization of 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), sodium dodecyl sulfate (SDS), and phosphoric acid bis(tridecafluoro-octyl) ester ammonium salt (FSP) as surfactants, which function as transfer and dispersing agents, facilitate a suitable environment for the polymerization of p-MMA/nBA/FMA colloidal dispersions that exhibit nonspherical particle morphologies. Such nonspherical particles upon coalescence form phase-separated films with unique surface properties.

Journal Article

Abstract  Decomposition of perfluorinated chemicals is of significant interest in both scientific and industrial perspectives. Here, we report the decomposition of perfluorooctanoic acid (PFOA) under sonication-assisted photocatalysis by utilizing commercial TiO(2) (RdH) and home-made TiO(2) (sol-gel) as photocatalysts at ambient temperature, pressure and near neutral pH with the irradiation of 254nm UV light. PFOA was decomposed into fluoride ions and to several perfluorinated carboxylic acids (PFCAs) with a shorter carbon chain length such as perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), perfluoropropanoic acid (PFPA), and trifluoroacetic acid (TFA). The efficiency of sonication-assisted photocatalysis was found to be 64%. In all the cases, higher efficiencies were obtained when sol-gel TiO(2) was used as a photocatalyst than the commercial RdH TiO(2) catalyst. The specific surface area is three times higher for sol-gel TiO(2) than commercial RdH TiO(2) and appears to be the probable reason for the observed differences in the corresponding efficiencies. It is also interesting to note that pH plays a determining role in the decomposition of PFOA and correspondingly photocatalyses were carried out under different controlled pH. Perfluoroalkyl radicals are presumably oxidized by superoxide and hydroxyl radicals generated during the TiO(2)-mediated photocatalysis at pH 4 and 10, respectively. The role of sonication in sonication-assisted photocatalysis was construed to be an aid to photocatalysis than a tool itself. Sonication enhances photocatalysis through physical dispersion of TiO(2) and eases mass transfer which keeps on rejuvenating the TiO(2) surface.

Journal Article

Abstract  A major question regarding the global distribution of perfluorochemicals (PFCs) is one of transport. It has been suggested that atmospheric transport of volatile precursor compounds to remote areas and subsequent degradation to the nonvolatile PFCs is responsible for contamination of biota. This paper presents surface water PFC concentrations aimed at identifying tracers of atmospheric sources. Concentrations of PFCs including perfluorocarboxylates from C6 to C10 and perfluorooctane sulfonate (PFOS) are presented here from urban surface waters with presumably both atmospheric and nonatmospheric sources of PFCs, remote waters with only atmospheric sources of PFCs, and Lake Michigan. Perfluoroheptanoic acid (PFHpA) and perfluorooctanoic acid (PFOA) were detected in all surface water samples, and PFOS was detected in all but two samples. PFOS concentrations ranged from nondetect to 1.2 ng/L and from 2.4 to 47 ng/L in remote and urban surface waters, respectively. PFOA concentrations ranged from 0.14 to 0.66 ng/L and from 0.45 to 19 ng/L in remote and urban surface waters, respectively. The ratio of PFHpA to PFOA increased with increasing distance from nonatmospheric sources suggesting that it can be used as a tracer of atmospheric deposition of PFCs to surface waters. The ratio ranged from 0.5 to 0.9 in urban areas and from 6 to 16 in remote areas. Applying this tracer to measurements from Lake Michigan indicates that the primary source of PFCs to Lake Michigan is nonatmospheric, most likely inputs from wastewater treatment effluent.

Journal Article

Abstract  In this work we studied and compared the physicochemical properties of perfluorinated (sodium perfluoroheptanoate, C7FONa, and perfluorooctanoate, C8FONa) and hydrogenated (sodium octanoate, C8HONa, decanoate, C10HONa, and dodecanoate, C12HONa) amphiphiles. First, we determined their Krafft points to study the solubility and appropriate temperature range of micellization of these compounds. The critical micelle concentration (cmc) and ionization degree of micellization (beta) as a function of temperature (T) were estimated from conductivity data. Plots of cmc vs T appear to follow the typical U-shaped curve with a minimum T(min). The results show that the surfactants with CF2/CH2 ratio of 1.5 between alkyl chains (C12HONa-C8FONa and C10HONa-C7FONa) have nearly the same minimum value for cmc against temperature. The comparison between the cmc of hydrogenated amphiphiles and the corresponding perfluorinated amphiphiles must be done at this point. Thermodynamic functions of micellization were obtained by applying different theoretical models and choosing the one that best fit our experimental data. Although perfluorinated and hydrogenated amphiphiles present similar thermodynamic behavior, we have found a variation of 1.3 to 1.7 in the CF2/CH2 ratio, which did not remain constant with temperature. In the second part of this study the apparent molar volumes and adiabatic compressibilities were determined from density and ultrasound velocity measurements. Apparent molar volumes at infinite dilution presented the ratio 1.5 between alkyl chains again. However, apparent molar volumes upon micellization for sodium perfluoroheptanoate indicated a different aggregation pattern.

Journal Article

Abstract  Analysis of the (1)H NMR chemical shift variations for the methyl protons of sodium decanoate and decanoic acid in D(2)O solutions using reduced variables is consonant with a narrow distribution of sizes about the mean aggregation number for decanoate ion micelles, in contrast with decanoic acid polydisperse aggregates which increase their size with concentration, until phase separation is reached. At defined temperatures between 10 and 50 degrees C, the chemical shift coefficients for the methyl group protons exhibit a negative temperature slope (shielding) for decanoate ion micelles and a positive temperature slope (deshielding) for decanoic acid aggregates. These results suggest that an increase of temperature improves the mobility of the decanoate ion chains in the micelles, thus inducing the methyl groups of the decanoate ion micelles to spend more time near the micelle-water interfaces. In turn, the size of polydisperse decanoic acid aggregates increases with temperature.

  • <<
  • 1 of 14
  • >>
Filter Results