PFNS

Project ID

2634

Category

PFAS

Added on

Aug. 10, 2017, 8:55 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Synthesis and characterization of new naphthalene-based PFCB aryl ether polymeric isomers with 1,5-, 1,6-, 2,6-, and 2,7-linkages were described. Monomers of perfluorocyclobutane (PFCB) poly(aryl ether)s, 1,5-, 1,6-, 2,6-, and 2,7-bis(trifluorovinyloxy)naphthalene, were synthesized from dihydroxynaphthalenes in two steps and polymerized by 2 pi + 2 pi step-growth cyclopolymerization. The naphthalene-based PFCB polymers (PFNs) had a relatively high T-g in the range 106-144 degrees C and excellent thermal stability at temperatures up to 400 degrees C. Among PFN polymeric isomers, T-g of the 1,5-linked PFCB polymer (1,5-PFN) was 30-40 degrees C higher than those of the other naphthalene isomers due to its high steric hindrance around the backbone. The refractive index and birefringence of the PFN polymers in the form of spin-coated films were determined. The PFN isomeric polymers showed tunability in refractive index and the bireftingence of the order of 1,5 < 1,6 < 2,6 < 2,7-PFN and 1,5 < 1,6 < 2,7 < 2,6-PFN, respectively. PFN isomers had low birefringences below 0.002 except 2,6-PFN. The lowest value in birefringence was 0.0008 of 1,5-PFN due to its highly kinked structure. Plastic optical fibers of homopolymers, 1,5- and 2,7-PFN, and copolymers, 2,7-co-1,5-PFN and 2,7-PFN-co-6F-PF, were prepared, and optical losses and windows of them were observed. The attenuation loss of PFN polymers was about 0.17-0.27 dB/cm at the wavelength of near-IR optical sources. 1,5-PFN had a lower optical loss than 2,7-PFN. The optical loss of the 2,7-co-1,5-PFN copolymer was effectively reduced compared with that of 2,7-PFN. The lowest optical loss polymer for PFCB POF was 2,7-PFN-co-6F-PF of 0.07 dB/cm at the wavelength of the optical loss window and 0.17 dB/crn at 1300 nm.

Journal Article

Abstract  Fluorinated surfactant-based aqueous film-forming foams (AFFFs) are made up of per- and polyfluorinated alkyl substances (PFAS) and are used to extinguish fires involving highly flammable liquids. The use of perfluorooctanesulfonic acid (PFOS) and other perfluoroalkyl acids (PFAAs) in some AFFF formulations has been linked to substantial environmental contamination. Recent studies have identified a large number of novel and infrequently reported fluorinated surfactants in different AFFF formulations. In this study, a strategy based on a case-control approach using quadrupole time-of-flight tandem mass spectrometry (QTOF-MS/MS) and advanced statistical methods has been used to extract and identify known and unknown PFAS in human serum associated with AFFF-exposed firefighters. Two target sulfonic acids [PFOS and perfluorohexanesulfonic acid (PFHxS)], three non-target acids [perfluoropentanesulfonic acid (PFPeS), perfluoroheptanesulfonic acid (PFHpS), and perfluorononanesulfonic acid (PFNS)], and four unknown sulfonic acids (Cl-PFOS, ketone-PFOS, ether-PFHxS, and Cl-PFHxS) were exclusively or significantly more frequently detected at higher levels in firefighters compared to controls. The application of this strategy has allowed for identification of previously unreported fluorinated chemicals in a timely and cost-efficient way.

DOI
Book/Book Chapter

Abstract  Perfluoroalkanesulfonic acids and their derivatives are of commercial significance because of their unusual acid strength, chemical stability, and the surface activity of the higher members of the series (eight carbons and larger). The best method of preparation is via the perfluorinated sulfonyl fluorides derived from electrochemical fluorination, although other methods including direct fluorination with fluorine gas are known. The first member of the series, trifluoromethanesulfonic acid, is one of the strongest acids known. Alkyl esters of trifluoromethanesulfonic acid are among the best leaving groups known and are commonly used in that capacity in displacement reactions. Lithium trifluoromethanesulfonate solutions are very conductive and can find application as electrolytes in primary lithium batteries and as antistats for films. Derivatives of the longer-chain perfluoroalkanesulfonic acids have a number of unique surface-active properties and have formed a basis for a number of commercial products. The longer-chain acids and their salts, particularly C8F17SO3H and higher, are surface-active agents in aqueous media. They reduce the surface tension of water to levels not possible with hydrocarbon surfactants. Preparation of difunctional perfluoroalkanesulfonates and their derivatives is discussed, including fluorosulfonylacetyl fluoride. Fluorosulfonyldifluoracetyl fluoride is an important industrial intermediate used in the production of Du Pont's Nafion ion-exchange membranes and in many other applications.

Journal Article

Abstract  Perfluorooctanoate (PFO) and perfluorooctanesulfonate (PFOS) surfactant anions, once released, may rapidly reach remote regions. This phenomenon is puzzling because the water-bound anions of strong F-alkyl acids should be largely transported by slow oceanic currents. Herein, we investigate whether these hydrophobic F-alkyl oxoanions would behave anomalously under environmental conditions, as suggested elsewhere. Negative electrospray ionization mass spectra of micromolar aqueous PFO or PFOS solutions from pH 1.0 to 6.0 show (1) m/z = 499 (PFOS) signals that are independent of pH and (2) m/z = 413 (PFO) and 369 (PFO - CO(2)) signals, plus m/z = 213 (C(3)F(7)CO(2)(-)) and 169 (C(3)F(7)(-)) signals at higher collision energies, and, below pH similar to 4, m/z = 827 signals from a remarkably stable (PFO)(2)H(-) cluster that increase with decreasing pH. Since the SUM of the m/z = 369, 413, and 827 signal intensities is independent of pH, that is, effectively encompasses all major species, we infer that pK(a)(PFOSA) < 1.0 and pK(a)(PFOA) < 1.0. We also derive K(2) <= 4 x 10(7) M(-2) for the clustering equilibrium 2PFO + H(+) (sic) (PFO)(2)H. Thus, although (PFO)2H is held together by an exceptionally strong homonuclear covalent hydrogen bond, neither PFOS nor PFO will associate or protonate significantly at environmentally relevant subnanomolar concentrations above pH similar to 1.

Filter Results