3-Methoxybutyl acetate

Project ID

2732

Category

OPPT

Added on

Sept. 11, 2018, 5:36 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  A variety of methods were utilized to study the mechanism of reaction of 6-iodo-5,5-dimethyl-1-hexene and its bromo, chloro, and tosylate derivatives with LDA and several other lithium dialkylamides. In the reaction of 6-iodo-5,5-dimethyl-1-hexene with LDA in THF, radical, carbanion, and carbene pathways occurred simultaneously. However, when the corresponding bromide was allowed to react with LDA, the radical pathway was minor and when the corresponding chloride or tosylate was allowed to react with LDA, no evidence for radical products was observed. This is the first time that competing radical, carbanion, and carbene pathways have been detected in the reaction of a primary alkyl halide with any nucleophile.

DOI
Journal Article

Abstract  The decomposition of tert-butyl hydroperoxide by photochemically induced reactions in DMSO2) and water was investigated by cw-e.s.r. spectroscopy. The products tert-butylperoxyl, methyl and sulfur-centered free radicals were identified. The tert-butoxyl free radical is involved in the primary process as shown by time-resolved e.s.r. technique. On the basis of directly identified radical species, a mechanism for the photochemically induced reactions of tert-butyl hydroperoxide in DMSO is proposed. At concentrations below 0.8 mol.l-1 the radical formation from tert-butyl hydroperoxide proceeds by cleavage of the O-O bond rather than by hydrogen abstraction.

DOI
Journal Article

Abstract  A solution-processable double-cable polymer (PFT-PDI), composed of the backbone poly(fluorene-alt-hiophene) (PFT), the n-butoxyl linker, and the pendants perylenediimides (PDI), was developed. PFT-PDI was almost nonconductive with the hole and electron mobilities in the order of 10(-10). There was no charge transfer but energy transfer from the donor PFT chain to the acceptor PDI units. With a hole-transporting channel from the stacked PFT units and an electron-transporting channel along PDI chain, PFTPDI at the P3HT/PCBM interface facilitated the effective charge generation from P3HT excitons and charge transporting and enhanced the cell photocurrent. The encapsulated cell ITO/MoO/P3HT:PCBM:PFT-PDI/LiF/Al with doping PFT-PDI of 3 wt % demonstrated the maximum power conversion efficiency (PCE) of 4.50%, increasing by 27.5%, relative to PCE of 3.53% from the cell without doping. The PFT-PDI doping much improved the cell's stability with the loss of the initial PCE of 5.8%, in contrast to 29.7% from the reference device after being stored for 7 days.

WoS
Journal Article

Abstract  Six neopentyl esters have been selected, as models for pentaerythrityl esters used as lubricants, to study the selectivity of hydrogen abstraction by alkoxyl radicals. Kinetic and product data for the reactions of two oxygenated radicals, tert-butoxyl and cumyloxyl, with the six neopentyl esters between 408 and 438 K have been determined. They show that attack by the radicals occurs at the alpha- and subsequent positions on the acyl moiety as well as at the alkyl group. The selectivity of the reactions is discussed in terms of bond dissociation, steric and polar effects.

DOI
Journal Article

Abstract  The reaction enthalpies for the recombination of carbon-centered radicals, R, with molecular oxygen have been established by photoacoustic calorimetry (PAC) in the liquid phase and by means of density functional theory calculations (DFT) with the B3LYP functionals and the 6-31(d) basis set. The experimental study revealed the following carbon-oxygen bond dissociation enthalpies, BDE(R-OO) (kcal mol(-1)): cyclohexadienyl (12), 1-tetrahydrofuryl (32), and dioxanyl (34). For 1-triethylaminyl and 1-pyrrolidinyl, the reaction enthalpy suggests that in organic solvents disproportionation becomes important even within the first stage of the reaction. DFT underestimates the BDE(R-OO) by 0-6 kcal mol(-1). However, DFT BDE(R-H)BDE(R-OO) are in accordance with experimental data. The computed BDE(R-OO) is not sensitive to substitution by alkyl groups.

DOI
Journal Article

Abstract  Using competition kinetic methodology, absolute rate constants for bimolecular hydrogen abstraction from a variety of organic substrates in solution have been obtained for the n-C4H9CF2CF2., n-C4F9., and i-C3F7. radicals. Fluorine substitution substantially increases the reactivity of alkyl radicals with respect to C-H abstraction, with the secondary radical being most reactive. A wide range of substrate reactivities (5200-fold) was observed, with the results being discussed in terms of an interplay of thermodynamic, polar, steric, stereoelectronic, and electrostatic/field effects on the various C-H abstraction transition states. Representative carbon-hydrogen bond dissociation energies of a number of ethers and alcohols have been calculated using DFT methodology.

Technical Report

Abstract  This is a partial translation from Japanese to English for key sections of the report that describe the test methods and critical effects observed [sections 6.7-6.11 and 8.2]. Tables of results and other study measurements are available in English in the Appendix of the original report. This translation refers to the results of existing chemicals survey conducted by the Japanese Government.

Journal Article

Abstract  We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

Journal Article

Abstract  We investigate the statistical thermodynamics and kinetics of the 1,5-hydrogen shift isomerization reaction of the 1-butoxyl radical and its reverse isomerization. The partition functions and thermodynamic functions (entropy, enthalpy, heat capacity, and Gibbs free energy) are calculated using the multi-structural torsional (MS-T) anharmonicity method including all structures for three species (reactant, product, and transition state) involved in the reaction. The calculated thermodynamic quantities have been compared to those estimated by the empirical group additivity (GA) method. The kinetics of the unimolecular isomerization reaction was investigated using multi-structural canonical variational transition state theory (MS-CVT) including both multiple-structure and torsional (MS-T) anharmonicity effects. In these calculations, multidimensional tunneling (MT) probabilities were evaluated by the small-curvature tunneling (SCT) approximation and compared to results obtained with the zero-curvature tunneling (ZCT) approximation. The high-pressure-limit rate constants for both the forward and reverse reactions are reported as calculated by MS-CVT/MT, where MT can be ZCT or SCT. Comparison with the rate constants obtained by the single-structural harmonic oscillator (SS-HO) approximation shows the importance of anharmonicity in the rate constants of these reactions, and the effect of multi-structural anharmonicity is found to be very large. Whereas the tunneling effect increases the rate constants, the MS-T anharmonicity decreases them at all temperatures. The two effects counteract each other at temperatures 385 K and 264 K for forward and reverse reactions, respectively, and tunneling dominates at lower temperatures while MS-T anharmonicity has a larger effect at higher temperatures. The multi-structural torsional anharmonicity effect reduces the final reverse reaction rate constants by a much larger factor than it does to the forward ones as a result of the existence of more low-energy structures of the product 4-hydroxy-1-butyl radical than the reactant 1-butoxyl radical. As a consequence there is also a very large effect on the equilibrium constant. The neglect of multi-structural anharmonicity will lead to large errors in the estimation of reverse reaction rate constants.

Journal Article

Abstract  Apoptosis-inducing factor (AIF) is critical for poly(ADP-ribose) polymerase-1 (PARP-1)-dependent cell death (parthanatos). The molecular mechanism of mitochondrial AIF release to the nucleus remains obscure, although a possible role of calpain I has been suggested. Here we show that calpain is not required for mitochondrial AIF release in parthanatos. Although calpain I cleaved recombinant AIF in a cell-free system in intact cells under conditions where endogenous calpain was activated by either NMDA or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) administration, AIF was not cleaved, and it was released from mitochondria to the nucleus in its 62-kDa uncleaved form. Moreover, NMDA administration under conditions that failed to activate calpain still robustly induced AIF nuclear translocation. Inhibition of calpain with calpastatin or genetic knockout of the regulatory subunit of calpain failed to prevent NMDA- or MNNG-induced AIF nuclear translocation and subsequent cell death, respectively, which was markedly prevented by the PARP-1 inhibitor, 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-iso-quinolinone. Our study clearly shows that calpain activation is not required for AIF release during parthanatos, suggesting that other mechanisms rather than calpain are involved in mitochondrial AIF release in parthanatos.

Journal Article

Abstract  A new emulsifier design principle, based on concepts borrowed from protein science, is proposed. Using this principle, a class of highly branched and spherically symmetric fluorinated oils and amphiles has been designed and synthesized, for potential applications in the construction of fluorocarbon nanoparticles. The Mitsunobu reaction was employed as the key step for introducing three perfluoro-tert-butoxyl groups into pentaerythritol derivatives with excellent yields and extremely simple isolation procedures. Due to the symmetric arrangement of the fluorine atoms, each fluorinated oil or amphile molecule gives one sharp singlet (19)F NMR signal.

Journal Article

Abstract  Monitoring of the workplace concentration of 3-methoxybutyl acetate (MBA), which is used in printer's ink and thinner for screen-printing and as an organic solvent to dissolve various resins, is important for health reasons. An active and a diffusive sampling method, using a gas chromatograph equipped with a flame ionization detector, were developed for the determination of MBA in workplace air. For the active sampling method using an activated charcoal tube, the overall desorption efficiency was 101%, the overall recovery was 104%, and the recovery after 8 days of storage in a refrigerator was more than 90%. For the diffusive sampling method using the 3M 3500 organic vapor monitor, the MBA sampling rate was 19.89 cm(3) min(-1). The linear range was from 0.01 to 96.00 microg ml(-1), with a correlation coefficient of 0.999, and the detection limits of the active and diffusive samplers were 0.04 and 0.07 microg sample(-1), respectively. The geometric mean of stationary sampling and personal sampling in a screen-printing factory were 12.61 and 16.52 ppm, respectively, indicating that both methods can be used to measure MBA in workplace air.

Journal Article

Abstract  We have demonstrated that hypochlorite (HOCI/OCl-) and hypobromite (HOBr/OBr-) can react with tert-butyl hydroperoxide with close rate constants (k(HOCl) = 10,8 M(-1) x s(1); k(HOBr) = 8,9 M(-1) x (s(-1)). By means of the spin trap 4-pyridyl-1-oxide-N-tert-butyl nitron we have found that both reactions proceed through decomposition of tert-butyl hydroperoxide and generation of tert-butyl peroxyl (OOC(CH3)3) and tert-butoxyl (OC(CH3)3) radicals, the ratio of their the concentrations being dependent on the concentration of tert-butyl hydroperoxide. Thus, hypobromite, similar to hypochlorite, is a precursor of free radicals produced in the reaction with organic hydroperoxides. This reaction can be of great importance in the intensification of free radical processes, namely, in lipid peroxidation at the stage of chain branching.

Journal Article

Abstract  Cascade radical cyclisation involving homolytic aromatic substitution has been used to synthesise new tetracycles. Treatment of vinyl iodide radical precursors with Me(3)Sn. radicals (from hexamethylditin) yielded intermediate vinyl radicals which undergo 5-exo cyclisation onto suitably placed nitrile groups to yield intermediate iminyl radicals. The iminyl radicals undergo aromatic homolytic substitution via 6-endo cyclisation (or 5-exo cyclisation followed by neophyl rearrangement) with loss of hydrogen (H.) in a H-abstraction step. We propose that this abstraction was facilitated by tert-butoxyl (t-BuO.) radicals from di-tert-butyl peroxide or methyl radicals, generated from breakdown of trimethylstannyl radicals (Me(3)Sn.). The biologically active alkaloids mappicine and luotonin A were synthesised using the new methodology. A novel radical conversion of nitriles to primary amides is proposed.

Journal Article

Abstract  Melatonin is an excellent free radical scavenger, reacting with tert-butoxyl and cumyloxyl radicals with rate constants of 3.4 x 10(7) and 6.7 x 10(7) M-1s-1, respectively. Reaction with benzophenone triplet occurs with a near-diffusion-controlled rate constant of 7.6 x 10(9) M-1s-1 in acetonitrile and probably involves charge transfer. When the radical pair formed by reaction of benzophenone triplet and melatonin is sequestered in a micelle, it is subject to extensive magnetic field effects that can be readily interpreted by the radical pair model.

Journal Article

Abstract  From the marine sponge Callyspongia aerizusa collected from the Sea of Bali, Indonesia, fungal isolates of Drechslera hawaiiensis were obtained. Culture filtrates of the fungus yielded four spiciferone derivatives which include spiciferone A (1) and B (2), and two other novel derivatives including spiciferol A (3) which is an alcohol congener of spiciferone A (1) and compound 4 which is an monocyclic spiciferone congener featuring a butoxyl side chain. The structures of the novel compounds were established on the basis of NMR spectroscopic (1H, 13C, COSY) and mass spectrometric (EIMS) data.

  • <<
  • 2 of 12
  • >>
Filter Results