3-Methoxybutyl acetate

Project ID

2732

Category

OPPT

Added on

Sept. 11, 2018, 5:36 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Three triphenylamine-based organic sensitizers with different electron-donating substituents (butoxyl chains or dimethylamine groups) were examined to investigate the effect of bulky alkoxy donor substituents on the photovoltaic performances of dye-sensitized solar cells (DSCs) in the presence and absence of the coadsorbent chenodeoxycholic acid (CDCA) in dye-bath solutions. The study showed that, using the D29 dye without bulky alkoxy substituents, the power conversion efficiency of DSC was significantly increased by about 84% in the presence of CDCA as compared to that in the absence of CDCA addition during the sensitization. However, the photovoltaic performance of D35-sensitized DSC having four bulky butoxyl substituents was not dependent on CDCA at all, probably due to the inherent structural nature of the D35 molecule. The DSC based on the D37 sensitizer with only two bulky butoxyl chains displayed an expected medium performance as compared to D29 and D35. The inclusion of bulky alkoxy electron-donating substituents in dye molecules for efficient DSCs suppressed the electron recombination and reduced the interactions between dye molecules. This emphasizes the importance of designing novel dyes including functional groups that incorporate the properties normally needed from an external coadsorbent. The development of a coadsorbent free system is in particular important for the future economization and simplification of the DSCs' assembly process.

DOI
Journal Article

Abstract  The amphiphilic derivatives of chitosan, (2-hydroxyl-3-butoxyl)-propylcarboxymethyl-chitosan (HBP-CMCHS), can form micelles with the inner core of hydrophobic segments and the outer shell of hydrophilic segments. The typical poor water-soluble drug silymarin was solubilized in the HBP-CMCHS micellar by physical entrapped method. Results showed that the solubilizing capacity was enhanced by increasing the concentration of HBP-CMCHS with the same dosage of silymarin. Silymarin-loaded micellar system of HBP-CMCHS was characterized by TEM and DLS. TEM photograph revealed that the micelles were spherical and silymarin was solubilized in the cores of the spherical polymeric micelles. DLS showed that after solubilization the size of the micelles became bigger. In vitro tests showed that silymarin was slowly released from micellar solution and the release lasted up to 40 h by means of the dialysis method.

Journal Article

Abstract  Poly(adenosine 5'-diphosphoribose) synthetase (PARS) has been described as an important candidate for mediation of neurotoxicity by nitric oxide. In the current study, we demonstrate for the first time that in vivo administration of a potent PARS inhibitor, 3,4-dihydro 5-[4-1(1-piperidinyl) butoxy]-1(2H)-isoquinolinone, leads to a significant reduction of infarct volume in a focal cerebral ischemia model in the rat. Focal cerebral ischemia was produced by cauterization of the right distal middle cerebral artery (MCA) with bilateral temporary common carotid artery occlusion for 90 minutes. 3,4-Dihydro 5[4-(1-piperidinyl) butoxy]-1(2H)-isoquinolinone was dissolved in dimethyl sulfoxide and injected intraperitoneally. Animals were treated 2 hours before MCA occlusion (control, n = 14; 5 mg/kg, n = 7; 10 mg/kg, n = 7; 20 mg/kg, n = 7; 40 mg/kg, n = 7), and 2 hours after MCA occlusion (same doses as before treatment). Twenty-four hours after MCA occlusion, the total infarct volume was measured using 2,3,5-triphenyltetrazolium chloride. Inhibition of PARS leads to a significant decrease in the damaged volume in the 5 mg/kg-treated group (106.7 +/- 23.2 mm3; mean +/- SD, P < 0.002), the 10 mg/kg-treated group (76.4 +/- 16.8 mm3, P < 0.001), and the 20 mg/kg-treated group (110.2 +/- 42.0 mm3, P < 0.02) compared with the control group (165.2 +/- 34.0 mm3). The substantial reduction in infarct volume indicates that the activation of PARS may play an important role in the pathogenesis of brain damage in cerebral ischemia through intracellular energy depletion.

DOI
Journal Article

Abstract  The EPR spectra of the products due to the addition of pyridines to two new tailed porphyrin iron complexes, 5-[o-(4-(1-imidazolyl)butoxyl)phenyl]10,15,20-triphenylporphyrinatoiron porphyrin iron complexes, 5-[o-(4-(1-imidazolyl)butoxyl)phenyl]10,15,20-triphenylporphyrinatoiron(III) chloride (o-PyBPTPPFe(III)Cl) have been investigated. The novel magnetic properties of the iron(III) ion in the pyridine-adducts of o-ImBPTPPFe(III)Cl were observed at 77 K.

WoS
Journal Article

Abstract  The data from 4 types of experiments are consistent with radical abstraction, usually rate limiting, as the dominant general mode of reaction of excited state polyoxometalates with organic substrates: (1) the relative rates and quantum yields for oxidation of cyclohexanol by several polyoxometalates varying widely in ground state redox potential from approximately 0V (very irreversible) vs Ag+/Ag in CH3CN for V10O286- to - 1.3 V for W10O324-, (2) the relative reactivities of several cyclohexyl and cyclooctyl derivatives with excited W10O324- and with an authentic ground state organic radical, t-butoxyl, (3) the excellent correlation between the relative rates for reaction of excited W10O324- and cycloalkanes with the C-H bond energies of the substrates, and (4) the product distributions generated on oxidation of five representative substrates by excited W10O324-. The collective data, however, do not rule out other mechanisms for some reactions between excited state polyoxometalates and organic substrates.

DOI
Journal Article

Abstract  The reaction of tert-butyl peroxypivalate (2) with methyl methacrylate (3) has been studied by the radical trapping technique employing 1,1,3,3-tetramethyl-2,3-dihydro-1H-isoindol (1) as a scavenger. Thermolysis of 2 generated tert-butoxyl, tert-butyl, and methyl radicals in the ratios of 48:50:2 at 60 degrees C in 3. Both alkyl radicals underwent selective tail addition to 3. tert-Butyl radicals reacted about twice as fast as methyl radicals with 3. The absolute rate constant for addition of tert-butyl radicals to 3 was estimated to be 2.3 x 10(6) M(-1) s(-1) at 60 degrees C. The overall ratio of addition to H abstraction in the reaction of 2 with 3 was 5:1.

DOI
Journal Article

Abstract  Ultrasonic absorption coefficients in the frequency range from 6.5 to 220 MHz have been measured in aqueous solutions of 3-ethoxy- and 3-butoxypropylamine as functions of their concentrations along with the sound velocity at 2.5 MHz and the density. In a 3-ethoxypropylamine solution, only one relaxational absorption has been observed up to 3.0 mol dm-3. The cause has been clarified to be due to a proton-transfer reaction of the amine from the concentration dependences of the relaxation frequency and the relaxational amplitude. The rate and thermodynamic parameters have been determined and reasonable values have been obtained as a diffusion-controlled reaction. In the solution of 3-butoxypropylamine, another relaxation process in addition to that due to the proton-transfer reaction has been observed in the concentrations of more than 0.5 mol dm-3. This relaxation process has been attributed to a perturbation associated with an aggregation reaction, 4A <----> A4, from the concentration dependences of the relaxation frequency and the relaxational amplitude of the absorption. The rate and thermodynamic constants for the proton-transfer and aggregation reactions have been determined. It has been found from a comparison of the results for the two solutions and others reported previously that the introduction of ether oxygen into amine molecules has little influence on the proton-transfer reaction, but prevents the formation of aggregates due to the hydrophobic interaction. It has also been seen from the results of 3-butoxypropylamine solutions that the butoxyl group has a fairly high ability of hydrophobic interaction and that nonionized molecules form aggregates in the aqueous solution.

Journal Article

Abstract  The gas-phase C-H bond dissociation enthalpy (BDE) in 1,3-cyclopentadiene has been determined by time-resolved photoacoustic calorimetry (TR-PAC) as 358 +/- 7 kJ mol(-1). Theoretical results from ab initio complete basis-set approaches, including the composite CBS-Q and CBS-QB3 procedures, and basis-set extrapolated coupled-cluster calculations (CCSD(T)) are reported. The CCSD(T) prediction for the C-H BDE of 1,3-cyclopentadiene (353.3 kJ mol(-1)) is in good agreement with the TR-PAC result. On the basis of the experimental and the theoretical values obtained, we recommend 355 +/- 8 kJ mol(-1) for the C-H BDE of 1,3-cyclopentadiene and 271 +/- 8 kJ mol(-1) for the enthalpy of formation of cyclopentadienyl radical.

Journal Article

Abstract  The reactivity of 11 aminoalkyl radicals toward different additives [oxygen, 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), and methyl acrylate (MA)] has been investigated through laser flash photolysis and quantum mechanical calculations. The transient absorption spectra of the radicals were recorded: good agreement was found with the spectra calculated by using quantum mechanical calculations. All the interaction rate constants were measured. A large range of values are obtained: (0.04-3) x 10(9) M(-1) s(-1) for O2, (0.002-5) x 10(8) M(-1) s(-1) for TEMPO, and (<0.004-2) x 10(7) M(-1) s(-1) for MA. Generation of the decarboxylated aminoalkyl radical derived from N-phenylglycine was unambiguously demonstrated. It was clearly found that both the addition to oxygen and the recombination with TEMPO were strongly governed by the reaction exothermicity. On the other hand, both polar and enthalpy factors have a large influence on the rate constants of the addition reaction to the acrylate unit, which were ranging over at least 4 orders of magnitude. This paper provides a set of new data to characterize the structure/reactivity relationships of aminoalkyl radicals.

DOI
Journal Article

Abstract  Gas phase dehydration of glycerol formerly in aqueous solution to acrolein was studied over iron MFI zeolites prepared by post-synthesis isomorphous substitution with different iron contents, Si/Al and substitution ratios. High Si/Al (60) ratios led to high conversion in presence of air and the insertion of iron in the zeolite framework greatly improved the catalytic performances by altering the amount and the nature of the coke components reducing dramatically the deactivation. Over the most efficient sample, acrolein yield reached a stabilized value of 68% with an excellent selectivity (80%), which ranked this catalyst among the best for the selective conversion of crude glycerol.

DOI
Journal Article

Abstract  A new series of nineteen 3-methoxy-1,2-dioxanes containing an amino moiety at C4 was designed, synthesized and tested for in vitro antimalarial activity against chloroquine sensitive (CQ-S) D10 and chloroquine resistant (CQ-R) W2 strains of Plasmodium falciparum (Pf). Cytotoxicity against the human endothelial cell line (HMEC-1) was also evaluated. The introduced modifications resulted in a notable improvement of the antimalarial activity. In particular, compound 9a with an amino-imidazole side-chain at C4 displays antimalarial activity in the high nanomolar range against the CQ-R Pf strain (W2 IC50 = 200 nM), being more active against CQ-R than CQ-S Pf strains and devoid of cytotoxicity against human HMEC-1 cells. On the other hand, some of the hybrids with 4-amino-7-chloroquinoline (9k-p) show an IC50 comparable to that of chloroquine against the CQ-S Pf strain (9k-p, D10 IC50 = 50-90 nM) but without losing potency against the CQ-R Pf strain (9k-p, resistance index = 1.2-2.6), with low cytotoxicity against HMEC-1. Structure-activity relationship studies show that the improved antimalarial activity of the new compounds is the result of a combination of cellular pharmacokinetics and pharmacodynamics effects.

Journal Article

Abstract  Activation of poly(ADP-ribose)polymerases 1 and 2 (PARP-1 and PARP-2) is one of the earliest responses of mammalian cells to DNA damage by numerous genotoxic agents. We have analysed the influence of PARP inhibition, either achieved by over-expression of the DNA binding domain of PARP-1 or by treatment with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone, on the repair of single-strand breaks (SSB), pyrimidine dimers and oxidative base modifications sensitive to Fpg protein (mostly 8-hydroxyguanine) in mammalian cells at very low, non-cytotoxic levels of DNA damage. The data show that the repair rates of all three types of DNA damage are significantly lower in PARP-inhibited cells. Importantly, the retardation of the repair of base modifications is not associated with accumulation of intermediates such as SSB or abasic sites. Moreover, the influence of the PARP inhibition is not observed in cells deficient in Cockayne syndrome B protein (Csb). The results indicate that PARP activation and Csb are both involved in a novel mechanism that accelerates the global repair of various types of DNA modifications.

Journal Article

Abstract  The photoproducts and hydrolysis products of butachlor in water were identified by gas chromatography/mass spectrometry. When exposed to UV light, butachlor in aqueous solution was rapidly degraded, giving at least 11 photoproducts as a result of dechlorination with subsequent hydroxylation or cyclization processes. The chemical structures of nine degradation compounds were identified on the basis of mass spectrum interpretation and literature data. Major photoproducts are identified as 8-ethyl-1-butoxymethyl-4-methyl-2-oxo-1,2,3,4-tetrahydro-quinoline, 2-hydroxy-2',6'-diethyl-N-(butoxymethyl) acetanilide, and a compound related to butachlor. Minor photoproducts are identified as 2,6-diethylaniline; 1-acetyl-7-ethylindole; N-(2,6-diethylphenyl)-N-(butoxymethyl)acetamide; 2-oxo-N-(2,6-diethyl-phenyl)-N-(butoxymethyl)acetamide; 1-hydroxyacetyl-2-butoxyl-3-methyl-7-ethylindole; 1-acetyl-2-butoxyl-3-methyl-7-ethylindole; and two compounds with the chemical structure unknown. The half-lives of butachlor UV photolysis were 7.54, 10.56, and 12.22 min in deionized water, river water, and paddy water, respectively. The half-lives of butachlor hydrolysis at pH 4, 7, and 10 were 630, 1155, and 1155 days at 25 +/- 1 degrees C, respectively. A hydrolysis product at pH 4 was identified by GC/MS to be 2-hydroxy-2',6'-diethyl-N-(butoxymethyl) acetanilide.

DOI
Journal Article

Abstract  The present study was aimed at the identification of antimicrobial components from Araucaria cunninghamii with an activity-guided purification process. Eight compounds were obtained from the most active n-BuOH fraction and identified as the new compound 4-n-butoxyl-phenylpropanetriol (1), together with seven known compounds (2a8). These compounds were tested for antimicrobial activities against five bacteria and four plant pathogenic fungi. Within the series of compounds tested, compound 2 was the most active, particularly displaying moderate antibacterial activities against Erwinia carotovora and Bacillus subtilis with MICs 7.8 and 15.5 mu g/ml. Moreover, this compound exhibited inhibitory activities against four plant pathogenic fungi: Helminthosporium sativum, Rhizoctonia solani, Fusarium oxysporum f. sp. Niveum and Fusarium oxysporum f. sp. Cubense, with EC50 values of 42.3, 90.0, 62.7 and 100.2 mu g/ml. To our knowledge, this is the first report that the n-BuOH fraction and compound 2 from A. cunninghamii showed inhibitory activity against plant pathogenic fungi.

Journal Article

Abstract  Agonists at A(1) receptors and antagonists at A(2A) receptors are known to be neuroprotective against excitotoxicity. We set out to clarify the mechanisms involved by studying interactions between adenosine receptor ligands and endogenous glutamate in cultures of rat cerebellar granule neurons (CGNs). Glutamate and the selective agonist N-methyl-D: -aspartate (NMDA), applied to CGNs at 9 div (days in vitro), both induced cell death in a concentration-dependent manner, which was attenuated by treatment with the NMDA receptor antagonists dizocilpine, D: -2-amino-5-phosphono-pentanoic acid (D: -AP5) or kynurenic acid (KYA), but not by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Glutamate toxicity was reduced in the presence of all of the following: cyclosporin A (CsA), a blocker of the membrane permeability transition pore, the caspase-3 inhibitor, benzyloxycarbonyl-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-fluoromethylketone (Z-DEVD-fmk), the poly (ADP-ribose) polymerase (PARP-1) inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), and nicotinamide. This is indicative of involvement of both apoptotic and necrotic processes. The A(1) receptor agonist, N (6)-cyclopentyladenosine (CPA), and the A(2A) receptor antagonist 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazo-5-yl-amino]ethyl)phenol (ZM241385) afforded significant protection, while the A(1) receptor blocker 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and the A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxyamidoadenosine (CGS21680) had no effect. These results confirm that glutamate-induced neurotoxicity in CGNs is mainly via the NMDA receptor, but show that a form of cell death which exhibits aspects of both apoptosis and necrosis is involved. The protective activity of A(1) receptor activation or A(2A) receptor blockade occurs against this mixed profile of cell death, and appears not to involve the selective inhibition of classical apoptotic or necrotic cascades.

DOI
Journal Article

Abstract  This account describes the results of our recent mechanistic studies on unimolecular C-C bond fragmentation (beta-scission and O-neophyl rearrangement) and bimolecular hydrogen atom transfer (HAT) reactions of alkoxyl radicals. Particular attention is devoted to the study of solvent effects on these reactions by means of time-resolved techniques such as laser flash photolysis. Information is provided on the effect of ring substituents and of the solvent on the spectral properties of arylcarbinyloxyl radicals and on their reactivity in beta-scission and O-neophyl rearrangement reactions, showing that a change in solvent can influence the fragmentation reactivity and selectivity. Detailed information has also been obtained on the role of the substrate structure and of the solvent on HAT reactions involving the cumyloxyl radical, showing the importance of solvent hydrogen bond interactions with the substrate and/or the radical on these processes, and providing a general mechanistic description of the kinetic solvent effects observed in HAT reactions from C-H bonds, as well as expanding on the previously available description for HAT from phenolic O-H bonds. The possible application of these findings to synthetically useful C-H functionalization procedures is discussed.

DOI
Journal Article

Abstract    Photocatalytic oxidation of cyclohexane forming the organic phase of reverse micellar systems on in situ prepared TiO2 ultrafine particles has been investigated. The cyclohexane was photo-oxidized on the TiO2 ultrarine particles to form cyclohexanone and cyclohexanol under air-saturated conditions. In the absence of O2, H2 was generated via reduction of water in the micellar waterpools. CO was also generated in the absence of O2 probably via a photocatalytic side reaction of 1-butanol which was added as a solvent of the precursor of TiO2 (titanium tetrabutoxide: TTB) to prepare the particles, 1-butoxyl groups of TTB or 1-butanol formed via hydrolysis of TTB. The molar ratio of water to TTB, Wt (=[H2O]/[TTB]) was a major factor in controlling the photocatalytic reaction behavior of the system. When the irradiation was carried out under air-saturated conditions for 18 h, the consumption rate of O2 increased monotonously as the value of the parameter Wt decreased, while the quantities of cyclohexanone and cyclohexanol formed decreased at Wt < 10. This can be attributed to a side reaction of 1-butoxyl groups of TTB molecules which is oxidized more easily than cyclohexane. This reaction becomes prominent in the extremely low Wt range owing to incomplete hydrolysis of TTB molecules.

Filter Results