Gluconates

Project ID

2761

Category

OPPT

Added on

Oct. 23, 2018, 8:31 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  In glucose minimal medium a PTS- strain of Escherichia coli [delta (ptsH ptsI crr)] could grow slowly (doubling time, d = 10 h). When the population reached 5 x 10(6) to 2 x 10(7) cells ml-1, mutants growing rapidly (d = 1.5 h) appeared and rapidly outgrew the initial population. These mutants (EF mutants) do not use a constitutive galactose permease for glucose translocation. They synthesize sufficient pyrroloquinoline quinone (PQQ) to yield a specific activity of glucose dehydrogenase (GDH) equivalent to that found in the parent strain grown in glucose minimal medium supplemented with 1 nM-PQQ. Membrane preparations containing an active GDH oxidized glucose to gluconic acid, which was also present in the culture supernatant of EF strains in glucose minimal medium. Glucose utilization is the only phenotypic trait distinguishing EF mutants from the parent strain. Glucose utilization by EF mutants was strictly aerobic as expected from a PQQ-dependent catabolism. The regulation of PQQ production by E. coli is discussed.

Journal Article

Abstract  1. Although calcium gluconate (CG) is recommended in the treatment of hydrofluoric acid (HF) eye burn its efficacy seems to be controversial, and controlled human or animal studies are limited. The study's objective is to compare the efficacy of 1% CG and normal saline irrigation for the treatment of HF eye injury in animals. 2. 0.05 ml 2% HF was instilled to anesthetized rabbit's eyes. One minute later, four treatment groups were studies: (1) irrigation with normal saline followed by topical antibiotics, corticosteroids and cycloplegics for 48 h (n = 10); (2) irrigation with 1% CG followed by the same topical treatment (n = 9); (3) as group 1 and 1% CG drops over 48 h (n = 10); (4) as group 3, and injection of 1% CG subconjunctivally after irrigation (n = 9). 3. Corneal erosion area, corneal haziness, conjunctival status, vascularization (pannus) and acidity were assessed before injury, immediately after initial treatment and 1, 2, 7 and 14 days thereafter by slit lamp aided by fluorescein staining. 4. Conjunctival pH dropped from 6.0-6.5 to 2.5-3 after injury and increased to 6-6.5 after irrigation. Corneal erosion: smaller in groups 2, 3, significantly so at 2 days, but not different at 14 days. Corneal haziness: more severe in group 4, at 14 days, insignificant. Conjunctival damage: significantly worse in group 4 at 2, 7 and 14 days. Pannus appeared in 2-4 eyes in each group. 5. It seems that for HF injury 1% CG did not have any significant advantage over saline irrigation and topical treatment only. It might have some initial and temporary effect on healing process especially that involving erosion. Given subconjunctivally, 1% CG may be toxic and worsens clinical outcome.

Journal Article

Abstract  A new family of activated glycosidic compounds has been designed and synthesized: (2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-2-nitrophenylmethane (1). It is stable in conditions commonly used for synthesis, and it can be converted to a sugar lactone derivative merely by photoirradiation (λ=365 nm): 2,3,4,6-tetra-O-acetyl-D-glucono-1,5-lactone (2). A mechanism for the reaction is proposed. The photochemical conversion of 1 in the presence of methanol has also been demonstrated, giving rise to methyl 2,3,4,6-tetra-O-acetyl-D-gluconate (3).

Journal Article

Abstract  75As NMR (Nuclear Magnetic Resonance) was used as a probe of arsenate interactions in solution. The linewidth at half-height of the 75As NMR signal of arsenate was studied as a function of solution pH and temperature. Below pH 11.5, the 75As signal was too broad to be detected, but at higher pH, up to pH = 13.5, the signal became much narrower. This indicates that the arsenate species AsO4(3-) is quite symmetric, but the asymmetry of HAsO4(2-) is sufficient to cause extensive quadrupolar relaxation of the 75As nucleus. A full pH range 75As and proton NMR study of the interaction of arsenate with ethanol, ethylene glycol, glycerol, ribose, mannose, glucose, gluconic acid and acetate was undertaken in order to follow arsenate ester formation. The 75As line broadening effects and the proton ligand shifts observed indicate that complexation of arsenate by ribose, mannose, glucose, ethanol, ethylene glycol, and glycerol occurs at pH 12.7. However, no significant interaction is detected by NMR with gluconic acid or acetate. The effect of the nucleoside adenosine is quite small and those of phosphate and of the nucleotides AMP and ADP are negligible. The interaction of arsenate with potential cationic centers, such as the basic amino acids lysine and arginine and some macrocyclic triamines, was also studied. Such interaction depends on the pKa for protonation of the amine groups.

Journal Article

Abstract  PESTAB Therapy of chronic poisonings with organochlorine compounds, such as DDT, BHC, 2-KF, dichloralurea, 2,4-D, polychloropinene, and hexachlorobutadiene, is reviewed. Since the mechanism of action of organochlorine compounds in humans is not known, specific antidote therapy is not available. Glucose, calcium gluconate, and vitamins, especially vitamin B, are useful during the initial stage of the chronic poisoning, characterized by autonomic dystonia and the asthenic syndrome. Belladonna preparations are used for elimination of autonomic irritability and of vasculay spasms, and tranquilizers are given to reduce emotional lability. Vitamin preparations, cocarboxylase, adenosine triphosphatase, and oxygen therapy are used to control hypoxia and to increase tonus. Electrophoresis according to Shcherbak with calcium chloride, vitamin B1, dimedrol, or novocaine is also useful. Vitamin B12 is given to control toxic polyneuritis. Hemorrhagic vasculitis is treated with vitamins C and P. B vitamins, thiamine, riboflavin, glucose, and insulin are used for the therapy of toxic hepatitis. Impairments of gastric secretory function are corrected by specific diets, nicotinic acid, and pyridoxine. Vitamins C and B, thiamine, folic acid, and iron preparations are useful in anemia.

Journal Article

Abstract  A new application of capillary electrophoresis (CE) for measuring inorganic anions in hailstones was carried out. Five hailstone specimens were collected from large blocks of ice that fell in January 2000 in some provinces of Spain. Sample handling and preparation procedures were performed with care. CE analysis of anions was carried out using indirect UV detection at 254 nm with a negative power supply (-15 kV) and hydrostatic injection (10 cm for 30 s) at 35 degrees C. Anion separation was completed in less than 4 min. The working electrolyte consisted of 4.7 mM sodium chromate, 4.0 mM OFM-OH (tetradecyltrimethylammonium hydroxide), 10 mM CHES [2-(N-cyclohexylamino)ethanesulfonic acid], and 0.1 mM calcium gluconate (pH 9.1). Good repeatability of migration times after eight injections (<0.7% RSD), adequate linearity responses (r2>0.9) as well as satisfactory detection limits (<0.35 ppm) were achieved. The analytical results provided by CE were compared with those obtained by traditional wet-chemical (WCH) methods. Most of the results obtained by CE were consistent with those of WCH, except for one sample.

WoS
Journal Article

Abstract  Ion channels from the midgut apical membrane of gypsy moth (Lymantria dispar) larvae were studied following mechanical fusion of brush-border membrane vesicles with planar phospholipid bilayer membranes. In symmetrical 300 mmol l(-)(1) KCl (pH 9.0), nine different channels with conductances ranging from 27 to 795 pS and linear current/voltage relationships were resolved. In the presence of a KCl gradient across the bilayer (450 mmol l(-)(1 )cis/150 mmol l(-)(1 )trans), 11 different conductance levels ranging from 16 to 850 pS were detected. The channels were slightly cationic: the zero-current reversal potential was shifted by -5 mV to -21 mV compared with symmetrical KCl conditions, corresponding to p(K)/p(Cl) permeability ratios of 1.5-8.0. Most channels were neither voltage-dependent nor Ca(2+)-sensitive and displayed complex gating kinetics. Addition of Ba(2+) or Cs(+) to both sides of the bilayer had little effect on channel activity, but fewer distinct channels were observed when KCl was replaced by potassium gluconate, suggesting an effect of Cl(-) on channel activity. A reduced number of channels was also detected when KCl was replaced by N-methyl- d-glucamine-HCl. Under asymmetrical N-methyl-d-glucamine-HCl conditions, only anionic channels were observed. They exhibited current rectification (35 pS at negative voltages and 81 pS at positive voltages) and were strongly voltage-dependent.

DOI
Journal Article

Abstract  Nanostructured carbon xerogels with controlled pore texture are used as catalyst support for the oxidation in aqueous phase of D-glucose into D-gluconic acid on Pd-Bi/C catalysts. X-ray photoelectron spectroscopy shows that metal active sites are not homogeneously dispersed in the spherical support particle but are concentrated in an external spherical layer. The influence of mass transfers on reaction kinetics is highlighted. Internal diffusional limitations are quantified using the Weisz modulus. It is shown that measuring the true kinetic reaction rate implies to choose the experimental conditions within a small range of values. (C) 2010 Elsevier B.V. All rights reserved.

Journal Article

Abstract  The Na(+)/H(+) exchanger has been the only unequivocally demonstrated H(+)-transport mechanism in the synaptosomal preparation. We had previously suggested that a Cl(-)-H(+) symporter (in its acidifying mode) is involved in cytosolic pH regulation in the synaptosomal preparation. Supporting this suggestion, we now show that: (1) when synaptosomes are transferred from PSS to either gluconate or sulfate solutions, the Fura-2 ratio remains stable instead of increasing as it does in 50 mM K solution. This indicates that these anions do not promote a plasma membrane depolarization. (2) Based in the recovery rate from the cytosolic alkalinization, the anionic selectivity of the Cl(-)-H(+) symporter is NO(3)(-) > Br(-) > Cl(-) > I(-) = isethionate = sulfate = methanesulfonate = gluconate. (3) PCMB 10 muM inhibits the gluconate-dependent alkalinization by 30 +/- 6%. (4) Neither Niflumic acid, 9AC, Bumetanide nor CCCP inhibits the recovery from the cytosolic alkalinization.

Journal Article

Abstract  We assessed mechanisms of acetylcholine- and bradykinin-induced relaxations in human omental resistance vessels. Ring segments (approximately 200 microns normalized ID) were dissected from omental biopsies obtained from women at laparotomy (nonpregnant) or at cesarean delivery (pregnant) and were studied under isometric conditions in a Mulvany-Halpern myograph. All arginine vasopressin-preconstricted vessels relaxed in a strictly endothelium-dependent manner to acetylcholine and bradykinin; maximal relaxations were not decreased by either NG-nitro-L-arginine or indomethacin. By contrast, bradykinin failed to relax vessels that had been preconstricted with potassium gluconate. In the combined presence of NG-nitro-L-arginine and indomethacin, addition of charybdotoxin, a selective antagonist of some calcium-sensitive potassium channels, did not inhibit maximal bradykinin-induced relaxation. By contrast, addition of 10 mmol/L tetraethylammonium chloride abolished relaxation in vessels from nonpregnant women but not in vessels from gravidas. We conclude that bradykinin relaxes these human resistance arteries in an endothelium-dependent but predominantly nitric oxide- and prostanoid-independent manner; relaxation likely depends on the action of an endothelium-derived hyperpolarizing vasodilator. Furthermore, in striking contrast to mechanistic insights from animal studies, human pregnancy appears to augment a mechanism of endothelium-dependent relaxation in these vessels that is insensitive to the inhibitors noted above. Whether a similar novel vasodilator mechanism in vivo contributes to the physiological vasodilation that characterizes human gestation or whether failure of such a mechanism might lead to preeclampsia remains the subject of future study.

Journal Article

Abstract  Membrane-integrated quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus was produced by heterologous expression of the gene for it in an Escherichia coli recombinant strain. The apoenzyme (lacking the cofactor pyrroloquinoline quinone, PQQ) was solubilized with Triton X-100 and purified to homogeneity. Reconstitution of the apoenzyme to full activity in the assay was achieved with a stoichiometric amount of PQQ in the presence of Mg2+. Just as for other PQQ-containing dehydrogenases where Ca2+ fulfills this role, Mg2+ anchors PQQ to the mGDH protein and activates the bound cofactor. This occurs in a precise way since high anomer specificity was found for the enzyme toward the sugars tested. Although the steady-state-type kinetics were as expected for a dye-linked dehydrogenase (ping-pong) and the PQQ in it was present in oxidized form, addition of glucose to the holoenzyme resulted in a very slow but continuous production of gluconolactone; i.e., the reaction did not stop after one turnover, with O2 apparently acting as an (albeit poor) electron acceptor by reoxidizing PQQH2 in the enzyme. The surprisingly low reactivity with glucose, in the absence of dye, as compared to the activity observed in the steady-state assay appeared to be due to formation of an anomalous enzyme form, mGDH. Formation of normal holoenzyme, mGDH, reducing added glucose immediately to gluconolactone (in one turnover), was achieved by treating mGDH with sulfite, by reconstituting apoenzyme with PQQ in the presence of sulfite, or by applying assay conditions to mGDH (addition of PMS/DCPIP). As compared to other quinoprotein dehydrogenases, mGDH appears to be unique with respect to the mode of PQQ-binding, as expressed by the special conditions for reconstitution and the absorption spectra of the bound cofactor, and the reactivity of the reduced enzyme toward O2. The primary cause for this seems not to be related to a different preference for the activating bivalent metal ion but to the special way of binding of PQQ to mGDH.

Journal Article

Abstract  The mineral phosphate-solubilizing (MPS) activity of a Pantoea agglomerans strain, namely MMB051, isolated from an iron-rich, acidic soil near Ciudad Piar (Bolívar State, Venezuela), was characterized on a chemically defined medium (NBRIP). Various insoluble inorganic phosphates, including tri-calcium phosphate [Ca(3)(PO(4))(2)], iron phosphate (FePO(4)), aluminum phosphate (AlPO(4)), and Rock Phosphate (RP) were tested as sole sources of P for bacterial growth. Solubilization of Ca(3)(PO(4))(2) was very efficient and depended on acidification of the external milieu when MMB051 cells were grown in the presence of glucose. This was also the case when RP was used as the sole P source. On the other hand, the solubilization efficiency toward more insoluble mineral phosphates (FePO(4) and AlPO(4)) was shown to be very low. Even though gluconic acid (GA) was detected on culture supernatants of strain MMB051, a consequence of the direct oxidation pathway of glucose, inorganic-P solubilization seemed also to be related to other processes dependent on active cell growth. Among these, proton release by ammonium (NH(4)(+) ) fixation appeared to be of paramount importance to explain inorganic-P solubilization mediated by strain MMB051. On the contrary, the presence of nitrate (NO(3)(-) ) salts as the sole N source affected negatively the ability of MMB051 cells to solubilize inorganic P.

Journal Article

Abstract  We report a 27-week, 850 g infant with severe Streptococcus group B sepsis and life-threatening hyperkalemia due to progressive anuria. On the fourth day of life, after he failed treatment with diuretics, salbutamol, insulin, calcium gluconate and sodium bicarbonate, he was treated with sorbitol-free Kayexalate enemas. Potassium level slowly decreased from 9.2 mmol/l to normal level along with a recovery of normal urine output. On the 11th day of life, clinical and radiological signs of a perforated necrotizing enterocolitis (NEC) occurred and the patient required surgical intestinal resection. Histologic examination of the ileum specimen revealed areas of necrosis with fibrosis and giant cell reaction to a nonpolarizable material consistent with sodium polystyrene sulfonate. Usually, Kayexalate is suspended in hyperosmolar sorbitol solutions and the elevated osmolarity seems to be responsible for hemorrhagic colitis, transmural necrosis and definitely NEC. Our case report shows that Kayexalate per se, and not necessarily suspended in sorbitol, can lead to gastrointestinal tract complications and NEC in preterm infants.

DOI
Journal Article

Abstract  The use of solid-state fermentation (SFF) of low cost substrates by fungal species to generate organic acid solutions for washing of lead from a contaminated soil was evaluated in this study. SFF filtrates were generated by fermentation of four substrates (corn cobs, apple pomace, rice and hay) with three fungal species (Aspergillus niger NRRL 2001 (A. niger 1), Aspergillus niger ATCC 64065 (A. niger 2), Aspergillus foetidus NRRL 337) at three fermentation times. The concentration and speciation of organic acids of the filtrates was found to be a function of the substrate type, the fungal species and the fermentation time. Fermentation of rice resulted in the highest concentrations of citric acid while fermentation of corn cobs, apple pomace and hay tended to generate oxalic acid with an increasing fraction of this acid as the fermentation progressed. Batch extraction tests that employed the SSF filtrates revealed that soluble lead concentrations as high as 35 mg/l could be achieved. Filtrates containing elevated concentrations of citric acid resulted in the greatest lead extraction while oxalic acid inhibited solubilization. Due to the buffering of pH that was provided by the soil in the batch tests this factor did not appear to influence lead extraction. Lead extraction was observed over an extended period of time in a column test. Lead extraction was strongly influenced by the pH of the soil column and less strongly influenced by the organic acid content of the SSF filtrate. The speciation of organic acids was substantially modified from primarily citric acid in the SSF filtrate to gluconic acid in the soil column discharge.

Journal Article

Abstract  The formation of volatile compounds in fresh cheese by 10 Enterobacteriaceae strains of dairy origin (4 Hafnia alvei, 2 Serratia liquefaciens, 1 Enterobacter cloacae, 1 Enterobacter sakazakii, and 2 Escherichia coli strains) was investigated. Small cheeses were made from pasteurized cow's milk separately inoculated with 1-3 x 10(3) CFU/ml of each of the Enterobacteriaceae strains, with glucono-8-lactone added to achieve a pH value of 5.2 in the curds. All strains reached counts close to 10(8) CFU/g in 1-day-old cheeses and survived well from day 1 to day 8. Cheeses were analyzed for volatile compounds by gas chromatography-mass spectroscopy, after extraction by dynamic headspace using a purge and trap apparatus. Sixty-one volatile compounds were determined in cheeses, 31 of which were further investigated. Significant increases of aldehydes, sulfur compounds, and aromatic compounds were recorded from 2-h curd to 1-day-old cheese, and of ketones, alcohols, and acids from 2-h curd to 8-day-old cheese. Acetaldehyde, 2-methyl propanal, and 3-methyl butanal predominated among aldehydes; 2,3-butanedione, 2,3-pentanedione, and 3-hydroxy 2-butanone among ketones; ethanol, 2-methyl propanol, and 3-methyl butanol among alcohols; and ethyl acetate among esters. Hierarchical cluster analysis of strains using the data of 31 volatile compounds separated clearly the strain of E. sakazakii, which produced high amounts of volatile compounds, from the other Enterobacteriaceae strains.

Journal Article

Abstract  An increasing interest in biomass as a renewable feedstock for the chemical industry has risen over the last decades, and glucose, the monomer unit of cellulose, has been widely studied as a source material to produce value-added products such as carboxylic acids, mainly gluconic and formic. In this work, the non-catalysed wet oxidation of glucose using hydrogen peroxide has been analysed, obtaining molar yields to gluconic and formic acids up to 15% and 64%, respectively. Glucose conversion was generally between 40 and 50%, reaching over 80% under the highest temperature (200°C). An appropriate choice of temperature can tune product distribution as well as reaction rates. The interaction of the wet oxidation with an electrolytic reaction was also analysed.

Journal Article

Abstract  BACKGROUND: Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas.

RESULTS: Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil.

CONCLUSION: The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates. Significant difference in plant growth promotion by efficient phosphate-solubilizing Pseudomonas strains point at the need for selecting potential strains in plant growth promotion experiments in conjunction with various phosphate substrates for their targeted application as bioinoculants.

Journal Article

Abstract  A novel and practical glucose biosensor was fabricated with immobilization of Glucose oxidase (GOx) enzyme on the surface of citric acid (CA) assisted cobalt ferrite (CF) magnetic nanoparticles (MNPs). This innovative sensor was constructed with glassy carbon electrode which is represented as (GOx)/CA-CF/(GCE). An explicit high negative zeta potential value (-22.4 mV at pH 7.0) was observed on the surface of CA-CF MNPs. Our sensor works on the principle of detection of H2O2 which is produced by the enzymatic oxidation of glucose to gluconic acid. This sensor has tremendous potential for application in glucose biosensing due to the higher sensitivity 2.5 microA/cm2-mM and substantial increment of the anodic peak current from 0.2 microA to 10.5 microA.

DOI
Journal Article

Abstract  Transition metal chalcogenides, especially molybdenum disulfide, have recently got wide attention from researchers because of their unique intrinsic characteristics. However, until now, few literatures have reported the photoluminescent MoS2 materials and their applications. In this work, we reported a bottom up strategy to synthesize water-soluble molybdenum disulfide quantum dots (MoS2 QDs) through a facile hydrothermal route using sodium molybdate and glutathione as Mo and S sources. The obtained MoS2 QDs show blue emission with a high quantum yield (similar to 10.3%) and robust dispersibility and storage stability optical property in aqueous solution. During the experiment, we found that in the presence of hydrogen peroxide (H2O2), the fluorescence of MoS2 QDs is quenched due to the interaction between H2O2 and MoS2 QDs. Simultaneously, glucose oxidase catalyzes the oxidation of glucose to produce gluconic acid and H2O2, so we can use this probe to detect glucose. By reason of the high zymolyte specificity of glucose oxidase, the detection of glucose has good selectivity and sensitivity with a detection limit of 5.16 mu M. Finally, the method is successfully applied for detection of glucose in fetal bovine serum samples. (C) 2017 Published by Elsevier B.V.

Journal Article

Abstract  The preterm infant fed parenterally is prone to some demineralisation due in part to insufficient Calcium (Ca) and Phosphorus (P) retention. In an attempt to augment Ca and P retention, we prepared a standardised parenteral solution containing calcium gluconate and glucose-1-phosphate (Phocytan) as source of phosphorus, yielding a daily supply of 75 mg/kg Ca and 45 mg/kg P. 28 very low birthweight infants were randomly assigned to receive either this solution (high Ca P ; n = 15) or a conventional formulation containing calcium gluconate and potassium mono- and dibasic phosphate delivering 42 mg/kg Ca and 36 mg/kg P daily (low Ca P ; n = 13). In the high Ca P daily retention was respectively 80% and 99% for Ca and P whereas in the low Ca P group, retention was 70% and 82%. Serum parathormone levels were significantly lower in the high Ca P group. We conclude that parenteral nutrition with a new high Ca P supplement results in an augmented Ca and P retention in very low birthweight infants. This may help to prevent neonatal bone demineralization.

DOI
Journal Article

Abstract  Due to stricter environmental legislation and implementation of the "waste valorization" concept, recycling of dairy effluent, whey, has drawn a considerable attention. The main constituent of whey is lactose, which is responsible for high biological oxygen demand (BOD) and chemical oxygen demand (COD) values. Therefore, without going to its direct disposal into aquatic system, synthesis of nutraceuticals from lactose is considered a commendable challenge. Lactose-derived nutraceuticals, such as galacto-oligosaccharide (GOS), lactulose, lactitol, lactosucrose, lactobionic acid, gluconic acid, lactone, and tagatose, have been synthesized through different chemical and biochemical reactions, such as hydrolysis, transgalactosylation, oxidation, reduction, isomerization, and hydrogenolysis, considering raw whey or isolated lactose as feedstock. Pure biocatalyst (enzyme) and inorganic catalyst have been used for the synthesis of lactose-based nutraceuticals by different types of operations, such as conventional batch and continuous bioreactors with free catalyst, continuous packed bed bioreactor with immobilized catalyst, moving bed reactor, and membrane-assigned bioreactor. Moreover, in many cases, lactose-based nutraceuticals (lactic acid, lactosucrose, lactobionic acid, gluconic acid, and tagatose) have been synthesized by microbial fermentation process. Free microbial cell in batch and continuous fermentor and whole cell immobilized packed bed bioreactor have been used for this purpose. This review presents and compares different process-related technological aspects for synthesis of lactose-derived nutraceuticals from whey.

Journal Article

Abstract  Molar conductivity of saturated aqueous solutions of calcium d-saccharate, used as a stabilizer of beverages fortified with calcium d-gluconate, increases strongly upon dilution, indicating complex formation between calcium and d-saccharate ions, for which, at 25 °C, Kassoc = 1032 ± 80, ΔHassoc° = −34 ± 6 kJ mol–1, and ΔSassoc° = −55 ± 9 J mol–1 K–1, were determined electrochemically. Calcium d-saccharate is sparingly soluble, with a solubility product, Ksp, of (6.17 ± 0.32) × 10–7 at 25 °C, only moderately increasing with the temperature: ΔHsol° = 48 ± 2 kJ mol–1, and ΔSassoc° = 42 ± 7 J mol–1 K–1. Equilibria in supersaturated solutions of calcium d-saccharate seem only to adjust slowly, as seen from calcium activity measurements in calcium d-saccharate solutions made supersaturated by cooling. Solutions formed by isothermal dissolution of calcium d-gluconate in aqueous potassium d-saccharate becomes spontaneously supersaturated with both d-gluconate and d-saccharate calcium salts, from which only calcium d-saccharate slowly precipitates. Calcium d-saccharate is suggested to act as a stabilizer of supersaturated solutions of other calcium hydroxycarboxylates with endothermic complex formation through a heat-induced shift in calcium complex distribution with slow equilibration upon cooling.

DOI
Journal Article

Abstract  BACKGROUNDThe variability of glucose oxidase (GOD) by Aspergillus tubingensis CTM507 in respect of titer under both submerged (SmF) and solid-state fermentation (SSF) was assessed in relation to growth and substrate consumption. L27 Taguchi experimental design was applied to determine optimum culture conditions for GOD production in SSF.

RESULTSKinetic results showed that fungal growth is a diauxic process which used glucose and gluconic acid as substrates, respectively, and that SmF is suitable for fungi growth. However, SSF led to higher GOD activity (170.59 U mL(-1) against 43.73 U mL(-1) by SmF). Moreover, GOD stability and liberation were related to the presence and levels of glucose, gluconic acid and to a lesser degree, lactose and arabinose. Optimization of culture media of multi-agro resources led to a final production yield of about 73103 U g(-1) of substrates which corresponded to 10 and 84-fold higher than the preliminary SFF and SmF results, respectively. These conditions were validated experimentally and revealed an enhanced GOD yield of 74%.

CONCLUSIONThese findings help an understanding of the phenomena of supremacy of SSF vs SmF to produce functional biomolecules. They also define an SSF process for an important enzyme production at low cost with interesting properties for industrial application. (c) 2015 Society of Chemical Industry

DOI
Journal Article

Abstract  Background: In this study, the performance of aerobic batch fermentation with Aspergillus niger producing sodium gluconate under different oxygen supply levels through adjusting the agitation rate were investigated. The response of glucose metabolism in A. niger to different oxygen uptake rate (OUR) levels has been studied in the present work. Results: Metabolic flux analysis demonstrated that the high oxygen supply condition was favorable for cell growth and initial sodium gluconate synthesis during the early fermentation phases. However, during the late stable phase, metabolic flux analysis indicated that a high yield of sodium gluconate production could be achieved at a medium OUR level of 55 2.5 mmol L-1 h(-1) as less flux was required for glucolysis and the TCA cycle. With a two-stage OUR control strategy, the final sodium gluconate yield of the batch fermentation was enhanced and reached 93.7% (mol vs mol), which was higher than those obtained using a high oxygen supply level throughout the whole fermentation process. Conclusions: Metabolic flux analysis was successfully used in the present work, and the two-stage OUR control strategy increased the yield of sodium gluconate production to 93.7%.

  • <<
  • 2 of 210
  • >>
Filter Results