Glycols

Project ID

2763

Category

OPPT

Added on

Oct. 23, 2018, 8:35 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  Toxline abstract: Technical rept. 19 Jun-12 Sep 90. See also Laboratory Supplement, PB92-196187. Sponsored by National Toxicology Program, Research Triangle Park, NC. Dipropylene glycol (DPG) is a high production glycol used in the manufacture of nitrocellulose solvent, lacquers, paints, printing inks, and shellac varnishes. In general, the toxicity of the glycols decreases as the molecular weight of the molecule increases. Therefore, it could be predicted that DPG would be less toxic than low molecular weight glycols such as ethylene glycol. Since, there is a lack of data with which to confirm this hypothesis this study was conducted to assess the potential for DPG to cause developmental toxicity and to compare its toxicity to other glycols. DPG (CAS No. 25265-71-8) was administered by gavage to timed-pregnant CD and Ntilde; rats (20-25/group) on gestational days (GD) 6-15 at dose levels of 0, 800, 2,000, or 5,000 mg/kg body weight/day. Animals were observed daily for clinical signs of toxicity. Food and water weights and body weights were reported on GD 0, 3, 6, 9, 12, 15, 18, and 20. All animals were killed on GD 20 and examined for maternal body and organ weights, implant status, fetal weight, sex, and morphological development. The mid-dose (2,000 mg/kg/day DPG) produced maternal lethality in 1 out of 25 pregnant animals while the high dose (5,000 mg/kg/day) caused the death of 2 out of 22 pregnant animals. Maternal body weights were significantly decreased in the 5,000 mg/kg/day group from GD 9 through GD 20. Maternal body weight gain of the animals exposed to 5,000 mg/kg/day was significantly reduced across the treatment period and across gestation. Corrected maternal weight gain (gestation gain minus gravid uterine weight) was also significantly reduced in the 5,000 mg/kg/day group. Absolute (g/day) and relative (g/kg body weight/day) food consumption of animals in the 5,000 mg/kg/day group were significantly decreased from control for the intervals from GD 6 to 9 and GD 9 to 12. As a result, the absolute and relative food consumption was decreased during treatment (GD 6 to 15) and across gestation (GD 0 to 20). Absolute food consumption was decreased in the animals from the 2,000 mg/kg/day group from GD 6 to 9. Relative water consumption by the animals in the 5,000 mg/kg/day group was increased for all measurement periods between GD 9 and GD 18. Relative liver weight of the maternal animals was significantly increased in the animals exposed to 2,000 and 5,000 mg/kg/day of DPG. No effects of DPG were observed on pre- or post-implantation loss. The mean male and female body weights per litter were associated with a significant decreasing linear trend, but mean male and female body weights were not significantly different from control in the exposed groups. Examination of the fetuses for external, visceral and skeletal malformations and variations did not reveal any significant effects among dose groups. In summary, there was no maternal or developmental toxicity at 800 mg/kg/day of DPG. Maternal toxicity and lethality were observed at 2,000 and 5,000 mg/kg/day, but developmental toxicity was not observed even at these maternally lethal exposures.

Journal Article

Abstract  In a prior study on electronic cigarette (EC) refill fluids, Cinnamon Ceylon was the most cytotoxic of 36 products tested. The purpose of the current study was to determine if high cytotoxicity is a general feature of cinnamon-flavored EC refill fluids and to identify the toxicant(s) in Cinnamon Ceylon. Eight cinnamon-flavored refill fluids, which were screened using the MTT assay, varied in their cytotoxicity with most being cytotoxic. Human embryonic stem cells were generally more sensitive than human adult pulmonary fibroblasts. Most products were highly volatile and produced vapors that impaired survival of cells in adjacent wells. Cinnamaldehyde (CAD), 2-methoxycinnamaldehyde (2MOCA), dipropylene glycol, and vanillin were identified in the cinnamon-flavored refill fluids using gas chromatography–mass spectrometry and high-pressure liquid chromatography (HPLC). When authentic standards of each chemical were tested using the MTT assay, only CAD and 2MOCA were highly cytotoxic. The amount of each chemical in the refill fluids was quantified using HPLC, and cytotoxicity correlated with the amount of CAD/product. Duplicate bottles of the same product were similar, but varied in their concentrations of 2MOCA. These data show that the cinnamon flavorings in refill fluids are linked to cytotoxicity, which could adversely affect EC users.

DOI
Book/Book Chapter

Abstract  There are five U.S. manufacturers of propylene glycol ether derivatives shown in Table 1. This table also lists the trade names for these materials. The ethers of mono‐, di‐, tri‐, and polypropylene glycol are prepared commercially by reacting propylene oxide with the alcohol of choice in the presence of a catalyst. They may also be prepared by direct alkylation of the selected glycol with an appropriate alkylating agent such as a dialkyl sulfate in the presence of an alkali. The monoalkyl ethers of propylene glycol occur in two isomeric forms, the alpha or beta isomer. The alpha isomer is a secondary alcohol (on the middle carbon of the propane backbone) that forms the ether linkage at the terminal alcohol of propylyene glycol. This alpha isomer is predominant during synthesis. The beta isomer is a primary alcohol with the ether linkage formed at the secondary alcohol. The toxicological significance of the alpha and beta isomers of propylene glycol is discussed later in this narrative. The monoalkyl ethers of dipropylene glycol occur in four isomeric forms. The commercial product Dowanol® DPM Glycol Ether is believed to be a mixture of these but to consist to a very large extent of the isomer in which the alkyl group has replaced the hydrogen of the primary hydroxyl group of the dipropylene glycol, which is a secondary alcohol. The internal ether linkage is between the 2 position of the alkyl‐etherized propylene unit and the primary carbon of the other propylene unit, thus leaving the remaining secondary hydroxyl group unsubstituted. In the case of dipropylene glycol monomethyl ether, the primary isomer is 1‐(2‐methoxy‐1‐methylethoxy)‐2‐propanol. The monoalkyl ethers of tripropylene glycol can appear in eight isomeric forms. The commercial product Dowanol® TPM Glycol Ether, however, is believed to be a mixture of isomers consisting largely of the one in which the alkyl group displaces the hydrogen of the primary hydroxyl group of the tripropylene glycol and the internal ether linkages are between secondary and primary carbons. The known physical properties of the most common ethers are given in Tables 5 and 8. The methyl and ethyl ethers of these propylene glycols are miscible with both water and a great variety of organic solvents. The butyl ethers have limited water solubility but are miscible with most organic solvents. This mutual solvency makes them valuable as coupling, coalescing, and dispersing agents. These glycol ethers have found applications as solvents for surface coatings, inks, lacquers, paints, resins, dyes, agricultural chemicals, and other oils and greases. The di‐ and tripropylene series also are used as ingredients in hydraulic brake fluids. Occupational exposure would normally be limited to dermal and/or inhalation exposure. The toxicological activity of the propylene glycol‐based ethers generally indicates a low order of toxicity. Under typical conditions of exposure and use, propylene glycol ethers pose little hazard. As with many other solvents, appropriate precautions should be employed to minimize dermal and eye contact and to avoid prolonged or repeated exposures to high vapor concentrations. The propylene glycol ethers (PGEs), even at much higher exposure levels, do not cause the types of toxicity produced by certain of the lower molecular weight ethylene glycol ethers (EGEs). Specifically, they do not cause damage to the thymus, testes, kidneys, blood, and blood‐forming tissues as seen with ethylene glycol methyl and ethyl ethers. In addition, the propylene glycol ethers induce neither the development effects of certain of the methyl‐ and ethyl‐substituted ethylene glycol‐based ethers nor the hemolysis and associated secondary effects seen in laboratory animals with EGEs. Other propylene glycol ethers also exhibit a similar lack of toxicity. For example, propylene glycol ethyl ether (PGEE) and its acetate do not cause the critical toxicities of testicular, thymic, or blood injury and do not produce birth defects. Propylene glycol tertiary‐butyl ether (PGTBE) also has been tested and fails to elicit these toxicities or birth defects in rats exposed by inhalation to substantial concentrations. The methyl, ethyl, and n‐butyl ethers of butylene glycol considered herein are prepared by reacting the appropriate alcohol with the so‐called straight‐chain butylene oxide, consisting of about 80% 1,2 isomer and about 20% 2,3 isomer in the presence of a catalyst. They are colorless liquids with slight, pleasant odors. The methyl and ethyl ethers are miscible with water, but the butyl ether has limited solubility. All are miscible with many organic solvents and oils; thus, they are useful as mutual solvents, dispersing agents, and solvents for inks, resins, lacquers, oils, and greases. Industrial exposure may occur by any of the common routes. The common esters and diesters of the polyols are prepared commercially by esterifying the particular polyol with the acid, acid anhydride, or acid chloride of choice in the presence of a catalyst. Mono‐ or diesters result, depending on the proportions of each reactant employed. The ether esters are prepared by esterifying the glycol ether in a similar manner. Other methods can also be used. The acetic acid esters have remarkable solvent properties for oils, greases, inks, adhesives, and resins. They are widely used in lacquers, enamels, dopes, adhesives, and in fluids to dissolve plastics or resins as applied by lacquer, paint, and varnish removers. Generally speaking, the fatty acid esters of the glycols and glycol ethers, in either the liquid or vapor state, are more irritating to the mucous membranes than those of the parent glycol or glycol ethers. However, once absorbed into the body, the esters are hydrolyzed and the systemic effect is quite typical of the parent glycol or glycol ethers. It should be noted that the nitric acid esters of glycols are highly toxic and exert a physiological action quite different from that of the parent polyols. The nitric acid esters of glycols are not typical of the esters or ether esters of organic acids and are considered separately in this chapter. They are used as explosives, usually in combination with nitroglycerin, to reduce the freezing point. Industrial exposures of consequence are most likely to occur through the inhalation of vapors, but may also occur through contact with the eyes and skin. With the dinitrate, a serious hazard exists from absorption through the skin.

Journal Article

Abstract  The dermal penetration of undiluted monopropylene glycol (MPG) and dipropylene glycol (DPG) has been measured in vitro using human abdominal skin under conditions of infinite dose application, and the results compared with predictions from the SKINPERM QSAR model (ten Berge, 2009). The measured steady-state penetration rates (J(ss)) for MPG and DPG were 97.6 and 39.3 mu g/cm(2)/h, respectively, and the permeability coefficients (K(p)) were 9.48 x 10(-5) cm/h for MPG and 3.85 x 10(-5) cm/h for DPG. In comparison, the SKINPERM model slightly over-predicted J(ss) and K(p) for MPG and DPG by between 2.6- and 5.1-fold, respectively. The model predictions of 254 mu g/cm(2)/h and 24.6 x 10(-5) cm/h for MPG, and 202 mu g/cm(2)/h and 19.8 x 10(-5) cm/h for DPG were in fairly good agreement with the measured values. Further, the model predicted a J(ss) of 101 mu g/cm(2)/h and a Kp of 9.9 x 10(-5) cm/h for the homologue tripropylene glycol. Assuming that the measured J(ss) was the same under conditions of finite dose application (taken to be 10 mu L/cm(2)) and was maintained over a 24-h period (both conservative assumptions), the relative dermal absorption of the applied dose was estimated to be 23% (0.96%/h) for MPG and 9% (0.39%/h) for DPG. However, the extrapolation for MPG may be further overestimated due to possible residence in the stratum corneum under infinite conditions of exposure that would not be applicable to a finite loading dose. (C) 2011 Elsevier Ltd. All rights reserved.

Filter Results