Third Biofuels Report to Congress

Project ID

2779

Category

Other

Added on

Nov. 21, 2018, 10:12 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Farmers, regulators, and researchers rely on pesticide use data to assess the effects of pesticides on crop yield, farm economics, off-target organisms, and human health. The publicly available pesticide use data in the United States do not currently account for pesticides applied as seed treatments. We find that seed treatment use has increased in major field crops over the last several decades but that there is a high degree of uncertainty about the extent of acreage planted with treated seeds, the amount of regional variability, and the use of certain active ingredients. One reason for this uncertainty is that farmers are less likely to know what pesticides are on their seed than they are about what pesticides are applied conventionally to their crops. This lack of information affects the quality and availability of seed treatment data and also farmers’ ability to tailor pesticide use to production and environmental goals.

Data & Software

Abstract  This chart shows the trend of U.S. public and private alternative fueling stations by fuel type. Propane stations were the most numerous until 2011 when they were surpassed by electric vehicle charging stations. The growth in chargers accelerated starting in 2011 following the 2010 increase of electric vehicles offered by major automakers. In 2021 alone, the number of charging stations grew by over 50%. The number of chargers is expected to increase as the population of electric vehicles continues to grow. The number of E85 stations has been increasing steadily since 2004 as the number of flex fuel vehicles available from major manufacturers has increased. The number of compressed natural gas (CNG) stations decreased between 1996 and 2006 (despite the increase in CNG sales during this time) largely because the average station size was increasing. CNG station counts also decreased between 2017 and 2020 due to station closures because of high repair and operating costs, and because of fleets transitioning away from CNG. The number of propane stations has steadily decreased since 2016, which can be attributed to stations beginning to offer only bottle fueling and discontinuing vehicle fueling.

DOI
Journal Article

Abstract  Waste-to-energy (WTE) technologies present an opportunity to recycle organic waste material into renewable energy while offsetting disposal and environmental costs. A key challenge to ensuring economic and environmental viability of WTE is understanding the variability of individual WTE resource characteristics, including their location, amount, and quality. The main objective of this study is to estimate the wet WTE resource potential in the United States and illustrate its geographic distribution. The wet resources considered in this study are wastewater sludge, animal manure, food waste, and FOG (fats, oils, and greases). This study is the first to achieve results below national level, at the finest geographic resolution. Our analysis indicates that about 566 teragrams (Tg) of wet WTE resources are generated annually in the United States. This amount corresponds to about 1 exajoule (EJ), which is sufficient to displace about 18% of the 2015 U.S. on-highway diesel consumption on an energy basis. About half of this potential is generated by animal manure.

Journal Article

Abstract  BACKGROUND: Biomass-derived jet fuel is an alternative jet fuel (AJF) showing promise of reducing the dependence on fossil fuel and greenhouse gas emissions. Hydroprocessed esters and fatty acids (HEFA) concept is also known as one of the pathways for producing bio jet fuel. HEFA fuel was approved by the American Society for Testing and Materials in 2011, and can be blended up to 50% with conventional jet fuel. Since then, several HEFA economic and life-cycle assessments have been published in literature. However, there have been limited analyses on feedstock availability, composition, and their impact on hydrocarbon yield (particularly jet blendstock yield) and overall process economics.

RESULTS: This study examines over 20 oil feedstocks, their geographic distribution and production levels, oil yield, prices, and chemical composition. The results of our compositional analysis indicate that most oils contain mainly C16 and C18 fatty acids except pennycress, yellow grease, and mustard, which contain higher values and thus would require hydrocracking to improve jet fuel production. Coconut oil has a large content of shorter carbon fatty acids, making it a good feedstock candidate for renewable gasoline instead of jet substitutes' production. Techno-economic analysis (TEA) was performed for five selected oil feedstocks-camelina, pennycress, jatropha, castor bean, and yellow grease-using the HEFA process concept.

CONCLUSION: The resource analysis indicates that oil crops currently grown in the United States (namely soybean) have relatively low oil yield when compared to oil crops grown in other parts of the world, such as palm, coconut, and jatropha. Also, non-terrestrial oil sources, such as animal fats and greases, have relatively lower prices than terrestrial oil crops. The minimum jet fuel selling price for these five resources ranges between $3.8 and $11.0 per gallon. The results of our TEA and resource studies indicate the key cost drivers for a biorefinery converting oil to jet hydrocarbons are as follows: oil price, conversion plant capacity, fatty acid profile, addition of hydrocracker, and type of hydroprocessing catalysts.

Filter Results