Third Biofuels Report to Congress

Project ID

2779

Category

Other

Added on

Nov. 21, 2018, 10:12 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Two complementary studies were performed to examine (1) the effect of 18 years of nitrogen (N) fertilization, and (2) the effects of N fertilization during one growing season on soil microbial community composition and soil resource availability in a grassland ecosystem. N was added at three different rates: 0, 5.44, and 27.2g N m(-2) y(-1). In both studies, Schizachyrium scoparium was the dominant plant species before N treatments were applied. Soil microbial communities from each experiment were characterized using fatty acid methyl ester (FAME) analysis. Discriminant analysis of the FAMEs separated the three N fertilizer treatments in both experiments, indicating shifts in the composition of the microbial communities. In general, plots that received N fertilizer at low or high application rates for 18 years showed increased proportions of bacterial FAMEs and decreased fungal FAMEs. In particular, control plots contained a significantly higher proportion of fungal FAMEs C18:1(cis9) and C18:2(cis9,12) and of the arbuscular mycorrhizal fungal (AMF) FAME, C16:1 (cis11), than both of the N addition treatment plots. A significant negative effect of N fertilization on the AMF FAME, C16:1 (cis11), was measured in the short-term experiment. Our results indicate that high rates of anthropogenic N deposition can lead to significant changes in the composition of soil microbial communities over short periods and can even disrupt the relationship between AMF and plants.

DOI
Journal Article

Abstract  Soil organic carbon (SOC) change can be a major impact of land use change (LUC) associated with biofuel feedstock production. By collecting and analyzing data from worldwide field observations of major LUCs from cropland, grassland, and forest to lands producing biofuel crops (i.e. corn, switchgrass, Miscanthus, poplar, and willow), we were able to estimate SOC response ratios and sequestration rates and evaluate the effects of soil depth and time scale on SOC change. Both the amount and rate of SOC change were highly dependent on the specific land transition. Irrespective of soil depth or time horizon, cropland conversions resulted in an overall SOC gain of 6-14% relative to initial SOC level, while conversion from grassland or forest to corn (without residue removal) or poplar caused significant carbon loss (9-35%). No significant SOC changes were observed in land converted from grasslands or forests to switchgrass, Miscanthus, or willow. The SOC response ratios were similar in both 0-30 and 0-100 cm soil depths in most cases, suggesting SOC changes in deep soil and that use of top soil only for SOC accounting in biofuel life cycle analysis (LCA) might underestimate total SOC changes. Soil carbon sequestration rates varied greatly among studies and land transition types. Generally, the rates of SOC change tended to be the greatest during the 10 years following land conversion and had declined to approach 0 within about 20 years for most LUCs. Observed trends in SOC change were generally consistent with previous reports. Soil depth and duration of study significantly influence SOC change rates and so should be considered in carbon emission accounting in biofuel LCA. High uncertainty remains for many perennial systems and forest transitions, additional field trials, and modeling efforts are needed to draw conclusions about the site- and system-specific rates and direction of change.

DOI
Journal Article

Abstract  Grasslands in the Conservation Reserve Program (CRP) in the USA may be converted to grain crops for bioenergy. The effect of no-till conversion of a smooth bromegrass (Bromus inermis Leyss) grassland to no-till corn (Zea mays L.) production on soil organic carbon (SOC) in the western Corn Belt was monitored for over 6 yr. A different (13)C/(12)C isotope signature is imparted to SOC by C4 plants including corn versus C3 plants such as bromegrass. Changes in C isotope ratios in SOC in three soil depths (0- to 5-, 5-10, and 10-30 cm) by particle size was also monitored during similar to 6.5 yr of no-till corn production at two different N levels (60 and 120 kg ha(-1)). Soil was collected eight times during the study from the 0- to 5- and 5- to 10-cm depths, and at four of these times from the 10- to 30-cm depth from each of the N rate replicates. Because fertilizer N had no significant effect over years on any of the aboveground biomass production variables, the data from both N treatments was combined for regression analysis to determine the effects of years of no-till corn production on SOC variables. Total SOC did not change significantly at any depth during the study, but there was a significant change in the source of the SOC. Total C4-C increased over this time, while C3-C decreased in the 0- to 5- and 5- to 10-cm depth, while neither changed in the 10- to 30-cm depth. In the 0- to 5- and 5- to 10-cm depths, largest loss of C3-C was from 2-mm aggregates, while largest increases in C4-C were in the 1-, 0.5-, 0.25-, and 0.125-mm aggregates. If CRP grasslands are converted to grain crop production, the data from this study strongly support the use of no-till farming practices as a method of conserving the SOC that was sequestered during the time period that the land was in the CRP.

DOI
Journal Article

Abstract  Although the United States has pursued rapid development of corn ethanol as a matter of national biofuel policy, relatively little is known about this policy's widespread impacts on agricultural land conversion surrounding ethanol refineries. This knowledge gap impedes policy makers' ability to identify and mitigate potentially negative environmental impacts of ethanol production. We assessed changes to the landscape during initial implementation of the Renewable Fuel Standard v2 (RFS2) from 2008 to 2012 and found nearly 4.2 million acres of arable non-cropland converted to crops within 100 miles of refinery locations, including 3.6 million acres of converted grassland. Aggregated across all ethanol refineries, the rate of grassland conversion to cropland increased linearly with proximity to a refinery location. Despite this widespread conversion of the landscape, recent cropland expansion could have made only modest contributions to mandated increases in conventional biofuel capacity required by RFS2. Collectively, these findings demonstrate a shortcoming in the existing 'aggregate compliance' method for enforcing land protections in the RFS2 and suggest an alternative monitoring mechanism would be needed to appropriately capture the scale of observed land use changes.

DOI
Journal Article

Abstract  Changes agricultural management can potentially increase the accumulation rate of soil organic C (SOC), thereby sequestering CO2 from the atmosphere. This study was conducted to quantify potential soil C sequestration rates for different crops in response to decreasing tillage intensity or enhancing rotation complexity, and to estimate the duration of time over which sequestration may occur. Analyses of C sequestration rates were completed using a global database of 67 long-term agricultural experiments, consisting of 276 paired treatments. Results indicate, on average, that a change from conventional tillage (CT) to no-till (NT) can sequester 57 +/- 14 g C m(-2) yr(-1), excluding wheat (Triticum aestivum L.)-fallow systems which may not result in SOC accumulation with a change from CT to NT. Enhancing rotation complexity can sequester an average 20 +/- 12 g C m(-2) yr(-1), excluding a change from continuous corn (Zea mays L.) to corn-soybean (Glycine mar L.) which may not result in a significant accumulation of SOC. Carbon sequestration rates, with a change from CT to NT, can be expected to peak in 5 to 10 yr with SOC reaching a new equilibrium in 15 to 20 yr. Following initiation of an enhancement in rotation complexity, SOC may reach a new equilibrium in approximately 40 to 60 yr. Carbon sequestration rates, estimated for a number of individual crops and crop rotations in this study, can be used in spatial modeling analyses to more accurately predict regional, national, and global C sequestration potentials.

DOI
Journal Article

Abstract  An ongoing study initiated in August 1990 investigated the effects of disturbances (organic mulching, cultivation, herbicides) on the detritus food-web in annual (maize) and perennial (asparagus) cropping systems. In this paper we attempt to simultaneously assess the functional and taxonomic structure of various components of this food-web. Biota in the perennial system was the most responsive to disturbance. The microflora was strongly influenced by mulching, and through tritrophic effects caused increases in top predatory but not most microbe-feeding nematodes. These effects have become increasingly apparent as the study has progressed and, in the asparagus site, have worked their way down the soil profile over time. Cultivation in the asparagus site caused large increases in bacterial-feeding nematodes, probably due to the high weed levels which developed during the winter months under that treatment. Evidence appears to exist for a cascade effect operating due to top down effects of nematodes on lower trophic levels. Ordination analysis of the nematode data demonstrated that nematode populations were more closely related to the state of environmental factors at earlier samplings than at contemporary samplings, and that the linkages between the nematode and environmental data sets strengthened over time. For both the nematode and soil-associated beetle data distinct assemblages of organisms were found in the mulched plots; distinct assemblages of nematode genera also emerged in the cultivated asparagus plots after two years. The soil-associated macrofauna was usually linked to high weed and surface organic residue levels. Species diversity of soil associated nematodes was not particularly responsive to disturbance while that of the soil-associated beetles was strongly enhanced by mulching and (sometimes) high weed levels. Approaches based on either functional group or species composition data emerged in our study as reasonably sensitive indicators for assessing the response of the soil biota to disturbance.

DOI
Journal Article

Abstract  After decades of decline, croplands are once again expanding across the United States. A recent spatially explicit analysis mapped nearly three million hectares of US cropland expansion that occurred between 2008 and 2012. Land use change (LUC) of this sort can be a major source of anthropogenic carbon (C) emissions, though the effects of this change have yet to be analyzed. We developed a data-driven model that combines these high-resolution maps of cropland expansion with published maps of biomass and soil organic carbon stocks (SOC) to map and quantify the resulting C emissions. Our model increases emphasis on non-forest-i.e. grassland, shrubland and wetland-above and belowground biomass C stocks and the response of SOC to LUC-emission sources that are frequently neglected in traditional Caccounting. These sources represent major emission conduits in the US, where new croplands primarily replace grasslands. We find that expansion between 2008-12 caused, on average, a release of 55.0 MgCha(-1) (SDspatial = 39.9 MgCha(-1)), which resulted in total emissions of 38.8 TgC yr(-1) (95% CI = 21.6-55.8 TgC yr(-1)). We also find wide geographic variation in both the size and sensitivity of affected Cstocks. Grassland conversion was the primary source of emissions, with more than 90% of these emissions originating from SOC stocks. Due to the long accumulation time of SOC, its dominance as a source suggests that emissions may be difficult to mitigate over human-relevant time scales. While methodological limitations regarding the effects of land use legacies and future management remain, our findings emphasize the importance of avoiding LUC emissions and suggest potential means by which natural C stocks can be conserved.

DOI
Journal Article

Abstract  Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions. Limited data are available on the impact of stover harvesting on soil microbial communities which are critical because of their fundamental relationships with C and N cycles, soil fertility, crop protection, and stresses that might be imposed by climate change. Using fatty acid and DNA analyses, we evaluated relative changes in soil fungal and bacterial densities and fungal-to-bacterial (F:B) ratios in response to corn stover removal under no-till, rain-fed management. These studies were performed at four different US locations with contrasting soil-climatic conditions. At one location, residue removal significantly decreased F:B ratios. At this location, cover cropping significantly increased F:B ratios at the highest level of residue removal and thus may be an important practice to minimize changes in soil microbial communities where corn stover is harvested. We also found that in these no-till systems, the 0- to 5-cm depth interval is most likely to experience changes, and detectable effects of stover removal on soil microbial community structure will depend on the duration of stover removal, sampling time, soil type, and annual weather patterns. No-till practices may have limited the rate of change in soil properties associated with stover removal compared to more extensive changes reported at a limited number of tilled sites. Documenting changes in soil microbial communities with stover removal under differing soil-climatic and management conditions will guide threshold levels of stover removal and identify practices (e.g., no-till, cover cropping) that may mitigate undesirable changes in soil properties.

DOI
Journal Article

Abstract  Long-term effects of cropping systems on soil properties, such as organic soil C and N levels is necessary so more accurate projections can be made regarding the sequester and emission of CO2 by agricultural soils. This information can then be used to predict the effects of cropping systems on both soil degradation, maintenance, or improvement and global climate changes. My objective was to evaluate the effects of crop rotation and N fertilizer management on changes in total soil C and N concentrations that have occurred during an 8-yr period in a long-term study, in the Western Corn Belt. Seven cropping systems (three monoculture, two 2-yr, and two 4-yr rotations) with three rates of N fertilizer were compared. Monocultures included continuous corn (Zea mays L.), soybean [Glycine - (L.) Merr.], and grain sorghum [Sorghum bicolor (L.) Moench]. The 2-yr rotations were corn-soybean and grain sorghum-soybean, and the two 4-yr rotations were corn-oat (Avena sativa L.) + dover (80% Melilotus officinalis Lam. and 20% Trifolium pratense). grain sorghum-soybean and corn-soybean-grain sorghum-oat + clover. Soil samples were taken in the spring both in 1984 and 1992 to a depth of 30 cm in 0- to 7.5-cm, 7.5- to 15-cm, and 15-to 30-cm increments. No differences were obtained in 1984, but both rotation and N rate significantly affected total soil C and N concentrations in 1992. The results indicate that C could be sequestered at 10 to 20 g m-2 yr-1 in some cropping systems with sufficient levels of N fertilizer. Greater storage of C in soils suggests CO2 emissions from agricultural soils could be decreased with improved management practices and may in the long term have a significant effect on CO2 in the atmosphere under current climate conditions.

Journal Article

Abstract  Energy production in the United States for domestic use and export is predicted to rise 27% by 2040. We quantify projected energy sprawl (new land required for energy production) in the United States through 2040. Over 200,000 km2 of additional land area will be directly impacted by energy development. When spacing requirements are included, over 800,000 km2 of additional land area will be affected by energy development, an area greater than the size of Texas. This pace of development in the United States is more than double the historic rate of urban and residential development, which has been the greatest driver of conversion in the United States since 1970, and is higher than projections for future land use change from residential development or agriculture. New technology now places 1.3 million km2 that had not previously experienced oil and gas development at risk of development for unconventional oil and gas. Renewable energy production can be sustained indefinitely on the same land base, while extractive energy must continually drill and mine new areas to sustain production. We calculated the number of years required for fossil energy production to expand to cover the same area as renewables, if both were to produce the same amount of energy each year. The land required for coal production would grow to equal or exceed that of wind, solar and geothermal energy within 2-31 years. In contrast, it would take hundreds of years for oil production to have the same energy sprawl as biofuels. Meeting energy demands while conserving nature will require increased energy conservation, in addition to distributed renewable energy and appropriate siting and mitigation.

DOI
Journal Article

Abstract  Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natural, non-cropped conditions have been documented to be less than 2 Mg ha−1 yr−1. On-site rates of erosion of lands under cultivation over large cropland areas, such as in the United States, have been documented to be on the order of 6 Mg ha−1 yr−1 or more. In northeastern China, lands that were brought into production during the last century are thought to have average rates of erosion over this large area of as much as 15 Mg ha−1 yr−1 or more. Broadly applied soil conservation practices, and in particular conservation tillage and no-till cropping, have been found to be effective in reducing rates of erosion, as was seen in the United States when the average rates of erosion on cropped lands decreased from on the order of 9 Mg ha−1 yr−1 to 6 or 7 Mg ha−1 yr−1 between 1982 and 2002, coincident with the widespread adoption of new conservation tillage and residue management practices. Taking cropped lands out of production and restoring them to perennial plant cover, as was done in areas of the United States under the Conservation Reserve Program, is thought to reduce average erosion rates to approximately 1 Mg ha−1 yr−1 or less on those lands.

DOI
Book/Book Chapter

Abstract  The EPIC model was used to simulate soil erosion and soil C content at 100 randomly selected sites in the US corn belt. Four management scenarios were run for 100 years: (1) current mix of tillage practices maintained; (2) current trend of conversion to mulch-till and no-till maintained; (3) trend to increased no-till; (4) trend to increased no-till with addition of winter wheat cover crop. As expected, the three alternative scenarios resulted in substantial decreases in soil erosion compared to the current mix of tillage practices. C content of the top 15 cm of soil increased for the alternative scenarios, while remaining approximately constant for the current tillage mix. However, total soil C to a depth of 1 m from the original surface decreased for all scenarios except for the no-till plus winter wheat cover crop scenario. Extrapolated to the entire US corn belt, the model results suggest that, under the current mix of tillage practices, soils used for corn and/or soybean production will lose 3.2 x 106 tons of C per year for the next 100 years. About 21% of this loss will be C transported off-site by soil erosion; an unknown fraction of this C will be released to the atmosphere. For the base trend and increased no-till trend, these soils are projected to lose 2.2 x 106 t-C yr-1 and 1.0 x 106 t-C yr-1, respectively. Under the increased no-till plus cover crop scenario, these soils become a small sink of 0.1 x 106 t-C yr-1. Thus, a shift from current tillage practices to widespread use of no-till plus winter cover could conserve and sequester a total of 3.3 x 106 t-C yr-1 in the soil for the next 100 years.

Technical Report

Abstract  This report updates the findings of the first Report to Congress, published in 2011, with respect to environmental and resource conservation impacts, which together are intended to address the Section 204 statutory impacts since the passage of the EISA. This report reflects the current scientific understanding of the Section 204 impacts as presented in the published literature about biofuel use and production using data gathered through May 2017. Data on U.S. land use and the scientific literature through April 2017 were also reviewed. Greenhouse gas emission reductions that result from replacing biofuel with fossil fuel are not assessed in this report. This report does not make comparisons to estimated environmental impacts of other transportation fuels or energy sources.

Journal Article

Abstract  Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the spatial extent and temporal duration of ethanol and gasoline production processes and environmental effects based on a literature review and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol-supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

Technical Report

Abstract  Reducing tillage and increasing soil cover (through crop rotations and cover crops) can enhance soil health. To gauge the intensity of tillage over time, this report estimates the number of years no-till or strip-till are used over a 4-year period. Conservation tillage was used on 70 percent of soybean (2012), 65 percent of corn (2016), and 67 percent of wheat (2017) acres. Errata: On October 12, 2018, the report Tillage Intensity and Conservation Cropping in the United States was reposted to correct for coding errors that resulted in the miscalculation of some estimates for conservation cropping, cover crops, and other practices that affect crop residue. Specifically, Figure 3, Figure 4, Table 1a, and Table 1b have been replaced. Conforming changes have been made in the text on pages 6, 9, 10, 11, 12, and 18. The largest changes are an increase in cover crop acreage for corn (2016) and cotton (2015) and an increase in conservation cropping for wheat (2017). Acreages for tillage types in Tables 1a and 1b are lower because observations with less than 4 years of crop and tillage data were inadvertently included (but have now been excluded). All changes are restricted to figures, tables, and text that rely on ARMS cropping and tillage history data.

DOI
Journal Article

Abstract  Core Ideas: Farmers struggle to maintain and balance economic and environmental sustainability. Identification of knowledge gaps related to crop residue management. Discussion of crop residue manage expanded from the U.S. Midwest to a global perspective. Use of carbon flux tower data to validate simulation models. Crop residue harvesting impacts soil health, productivity, and greenhouse gas emissions. The amount of crop residues that can be sustainability removed is highly variable and is a function of many factors including the soil, climatic, and plant characteristics. For example, leaving an insufficient amount of crop residue on the soil surface can be detrimental for soil quality, result in loss of soil organic matter (SOM), and increase soil erosion, whereas leaving excessive amounts can impair soil-seed contact, immobilize N, and/or keep soils cool and wet. This special issue evolved as an outcome of, “Crop Residues for Advanced Biofuels: Effects on Soil Carbon” workshop held in Sacramento, CA, in 2017. The goal of the special issue is to provide a forum for identifying knowledge gaps associated with crop residue management and to expand the discussion from a regional Midwestern U.S. to a global perspective. Several crop residue experiments as well as simulation modeling studies are included to examine effects of tillage, crop rotation, livestock grazing, and cover crops on greenhouse gas (GHG) emissions, crop yield, and soil or plant health. The special issue is divided into 4 sections that include (i) Estimating Crop Residue Removal and Modeling; (ii) Cultural Practice Impact on Soil Health; (iii) Residue Removal Impact on Soil and Plant Health; and (iv) Cultural Practice Impact on Carbon Storage and Greenhouse Gas Emissions.

Journal Article

Abstract  Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 °C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.

DOI
Journal Article

Abstract  Winter cover crops (WCCs) provide agronomic and environmental benefits, although their impacts on subsequent crop yields have been reported to vary across regions, soils, or under different farm practices. To address the variability in response, previous qualitative and quantitative reviews have summarized the overall yield effects of WCCs. However, the results from such reviews need constant revision as new research is published and interest in the conservation benefits of WCCs increases. Here, we update a previous meta-analysis of WCC effects on corn (Zea mays) yields, which summarized peer-reviewed research from the United Sates and Canada that was published between 1965 and 2004. Our updated data set (1965 to 2015) comprises 268 observations from 65 studies conducted in different regions of the United States and Canada, and includes information about the management practices utilized (i.e., WCC species, nitrogen [N] fertilization, termination date, tillage, etc.). The effect-size was the response ratio (RR), defined as corn yield following WCCs relative to yield after no cover crop (NC). As in the previous meta-analysis, our results showed a neutral to positive contribution of WCCs to corn yields. On average, grass WCCs neither increased nor decreased corn yields, although corn grown for grain yielded relatively higher than silage corn after grass WCCs. Legume WCCs resulted in subsequent higher corn yields by 30% to 33% when N fertilizer rates were low or the tillage system shifted from conventional tillage (CT) to no-tillage (NT). Mixture WCCs increased corn yields by 30% when the cover crop was late terminated (zero to six days before subsequent corn). Evidence of 65 years of research showed that uncertainty around the RR has decreased and corn yield response to WCCs has stabilized over time. Our results suggest that benefits of WCCs do not result in reduced corn productivity if properly managed.

DOI
Journal Article

Abstract  Soil is one of the most important natural resources and medium for plant growth. Anthropogenic interventions such as tillage, irrigation, and fertilizer application can affect the health of the soil. Use of fertilizer nitrogen (N) for crop production influences soil health primarily through changes in organic matter content, microbial life, and acidity in the soil. Soil organic matter (SOM) constitutes the storehouse of soil N. Studies with N-15-labelled fertilizers show that in a cropping season, plants take more N from the soil than from the fertilizer. A large number of long-term field experiments prove that optimum fertilizer N application to crops neither resulted in loss of organic matter nor adversely affected microbial activity in the soil. Fertilizer N, when applied at or below the level at which maximum yields are achieved, resulted in the build-up of SOM and microbial biomass by promoting plant growth and increasing the amount of litter and root biomass added to soil. Only when fertilizer N was applied at rates more than the optimum, increased residual inorganic N accelerated the loss of SOM through its mineralization. Soil microbial life was also adversely affected at very high fertilizers rates. Optimum fertilizer use on agricultural crops reduces soil erosion but repeated application of high fertilizer N doses may lead to soil acidity, a negative soil health trait. Site-specific management strategies based on principles of synchronization of N demand by crops with N supply from all sources including soil and fertilizer could ensure high yields, along with maintenance of soil health. Balanced application of different nutrients and integrated nutrient management based on organic manures and mineral fertilizers also contributed to soil health maintenance and improvement. Thus, fertilizer N, when applied as per the need of the field crops in a balanced proportion with other nutrients and along with organic manures, if available with the farmer, maintains or improves soil health rather than being deleterious.

DOI
Journal Article

Abstract  Soil microorganisms (bacteria, fungi) and microfauna (nematodes, protozoa) have been shown to be sensitive to organic amendments, but few experiments have investigated the responses of all these organisms simultaneously and across the soil profile. We investigated the impact of organic amendment and tillage on the soil food web at two depths in a field experiment. Over three growing seasons, field plots received seasonal organic amendment that was either incorporated into the soil (tilled) or not (no-till) as part of a tomato/soybean/corn cropping system. Un-amended, control plots that were either tilled or no-till were also included. We hypothesized that the addition of amendments would have a bottom–up effect on the soil food web, positively influencing the abundance of microorganisms, protozoa, and nematodes, primarily in the surface layers of the soil, but that this effect could be extended into deeper layers via tillage. Organic amendment had positive effects on most measured variables, including organic matter, respiration, protozoan and nematode density, and the abundance of PLFA biomarkers for bacteria and fungi. These effects were more pronounced in the 0–5 cm depth, but most variables increased with amendment in the deeper layer as well, especially with tillage. Denaturing Gradient Gel Electrophoresis (DGGE) of bacterial rDNA fragments indicated that distinct bacterial communities were selected for among tillage and amendment treatments and depths. Nematode faunal indices were not influenced by amendment, however. Increased nematode density in amended soils encompassed all trophic groups of free-living nematodes, with the greatest response among fungal-feeders, particularly with tillage. Increased biomass of microorganisms and decomposer microfauna in amended, tilled soils (0–5 cm depth) corresponded with a decline in the abundance of plant-parasitic nematodes. In control soils (0–5 cm depth), tillage reduced the relative abundance of fungal-feeding nematodes and increased the density of bacterial-feeding nematodes, in particular nematode species contributing to the Enrichment Index. When combined with organic amendment however, tillage was associated with increases in fungal-feeding nematodes and fungal biomarker PLFA. The results of this study suggest that when combined with amendment, tillage enhances the soil food web beyond the effect of amendment alone and is associated with declines in plant-parasitic nematodes.

Filter Results