Nutrient Stressors and Biological Responses

Project ID

2796

Category

Other

Added on

April 9, 2019, 5:25 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Book/Book Chapter

Abstract  The Cahaba River located in Jefferson County, Birmingham, Alabama has been placed on the 303(d) list by USEPA Region IV and the Alabama Department of Environmental Management as use-impaired from nutrients. In a letter to the County, USEPA stated “The listing of the Cahaba River for nutrients is based on the inability of endangered species to survive or adequately reproduce as a result of alterations of habitat substrate caused by excessive nutrients…”. The premise by USEPA and the US Fish and Wildlife Service is that excessive nutrient levels have caused an algal community shift, from diatoms to filamentous green algae within the river, which has resulted in habitat impairment. Further, the agencies contend that this habitat impairment has led to the extirpation of eight endangered species (2 fishes and 6 molluscs). According to USEPA's TMDL flowchart, if nutrient impairment occurs in rivers dominated by periphytic algae, simple empirical relationships can be used to relate nutrient levels to the cause of impairment, excessive periphytic algae growth. However, in the case of the Cahaba River, a valid empirical relationship between total phosphorus and periphytic chlorophyll a does not exist (r2 = 0.12). We have demonstrated that this is due to various in-stream limiting factors such as light, turbidity, scour, herbivory and possibly herbicide toxicity. In order to model this complex system, we have applied USEPA's AQUATOX model. AQUATOX accounts for additional in-stream processes not available in other water quality models and resulted in a verifiable linkage between total phosphorus and algal biomass. AQUATOX also provided the linkages to ecosystem trophic levels which are important in determining the target level of total phosphorus which is protective of endangered species' habitats. We will describe the data used to define the issues on this TMDL, the process used in the calibration of AQUATOX, and the resulting linkages between total phosphorus and periphytic growth that are key to determining the ultimate target level of total phosphorus used for TMDL development.

DOI
Technical Report

Abstract  Research was conducted at 28-30 sites within eight study areas across the United States along a gradient of nutrient enrichment/agricultural land use between 2003 and 2007. Objectives were to test the application of an agricultural intensity index (AG-Index) and compare among various invertebrate and algal metrics to determine indicators of nutrient enrichment nationally and within three regions. The agricultural index was based on total nitrogen and phosphorus input to the watershed, percent watershed agriculture, and percent riparian agriculture. Among data sources, agriculture within riparian zone showed significant differences among values generated from remote sensing or from higher resolution orthophotography; median values dropped significantly when estimated by orthophotography. Percent agriculture in the watershed consistently had lower correlations to invertebrate and algal metrics than the developed AG-Index across all regions. Percent agriculture showed fewer pairwise comparisons that were significant than the same comparisons using the AG-Index. Highest correlations to the AG-Index regionally were 0.75 for Ephemeroptera, Plecoptera, and Trichoptera richness (EPTR) and 0.70 for algae Observed/Expected (O/E), nationally the highest was 0.43 for EPTR vs. total nitrogen and 0.62 for algae O/E vs. AG-Index. Results suggest that analysis of metrics at national scale can often detect large differences in disturbance, but more detail and specificity is obtained by analyzing data at regional scales.

DOI
Journal Article

Abstract  1. Algal-community metrics were calculated for periphyton samples collected from 976 streams and rivers by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Programme during 1993-2001 to evaluate national and regional relations with water chemistry and to compare whether algal-metric values differ significantly among undeveloped and developed land-use classifications.

2. Algal metrics with significant positive correlations with nutrient concentrations included indicators of trophic condition, organic enrichment, salinity, motility and taxa richness. The relative abundance of nitrogen-fixing algae was negatively correlated with nitrogen concentrations, and the abundance of diatom species associated with high dissolved oxygen concentrations was negatively correlated with both nitrogen and phosphorus concentrations. Median algal-metric values and nutrient concentrations were significantly lower at undeveloped sites than those draining agricultural or urban catchments.

3. Total algal biovolume did not differ significantly among major river catchments or land-use classifications, and was only weakly correlated with nitrate (positive) and suspended-sediment (negative) concentrations. Estimates of periphyton chlorophyll a indicated an oligotrophic-mesotrophic boundary of about 21 mg m(-2) and a mesotrophic-eutrophic boundary of about 55 mg m(-2) based on upper and lower quartiles of the biovolume data distribution.

4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

Book/Book Chapter

Abstract  Physical factors, including both in-stream and riparian habitat characteristics that limit biomass or otherwise regulate aquatic biological condition, have been identified by previous studies. However, linking the ecological significance of nutrient enrichment to habitat or landscape factors that could allow for improved management of streams has proved to be a challenge in many regions, including agricultural landscapes, where many ecological stressors are strong and the variability among watersheds typically is large. Riparian and associated habitat characteristics were sampled once during 2003-04 for an intensive ecological and nutrients study of small perennial streams in five contrasting agricultural landscapes across the United States to determine how biological communities and ecosystem processes respond to varying levels of nutrient enrichment. Nutrient concentrations were determined in stream water at two different sampling times per site and biological samples were collected once per site near the time of habitat characterization. Data for 141 sampling sites were compiled, representing five study areas, located in parts of the Delmarva Peninsula (Delaware and Maryland), Georgia, Indiana, Ohio, Nebraska, and Washington. This report examines the available data for riparian and associated habitat characteristics to address questions related to study-unit contrasts, spatial scale-related differences, multivariate correlation structure, and bivariate relations between selected habitat characteristics and either stream nutrient conditions or biological responses. Riparian and associated habitat characteristics were summarized and categorized into 22 groups of habitat variables, with 11 groups representing land-use and land-cover characteristics and 11 groups representing other riparian or in-stream habitat characteristics. Principal components analysis was used to identify a reduced set of habitat variables that describe most of the variability among the sampled sites. The habitat characteristics sampled within the five study units were compared statistically. Bivariate correlations between riparian habitat variables and either nutrient-chemistry or biological-response variables were examined for all sites combined, and for sites within each study area. Nutrient concentrations were correlated with the extent of riparian cropland. For nitrogen species, these correlations were more frequently at the basin scale, whereas for phosphorus, they were about equally frequent at the segment and basin scales. Basin-level extents of riparian cropland and reach-level bank vegetative cover were correlated strongly with both total nitrogen and dissolved inorganic nitrogen (DIN) among multiple study areas, reflecting the importance of agricultural land-management and conservation practices for reducing nitrogen delivery from near-stream sources. When sites lacking segment-level wetlands were excluded, the negative correlation of riparian wetland extent with DIN among 49 sites was strong at the reach and segment levels. Riparian wetland vegetation thus may be removing dissolved nutrients from soil water and shallow groundwater passing through riparian zones. Other habitat variables that correlated strongly with nitrogen and phosphorus species included suspended sediment, light availability, and antecedent water temperature. Chlorophyll concentrations in seston were positively correlated with phosphorus concentrations for all sites combined. Benthic chlorophyll was correlated strongly with nutrient concentrations in only the Delmarva study area and only in fine-grained habitats. Current velocity or hydraulic scour could explain correlation patterns for benthic chlorophyll among Georgia sites, whereas chlorophyll in seston was correlated with antecedent water temperature among Washington and Delmarva sites. The lack of any consistent correlation pattern between habitat characteristics and organic material density (ash-free dry mass)

Journal Article

Abstract  This study examined the relative influence of nutrients (nitrogen and phosphorus) and habitat on algal biomass in five agricultural regions of the United States. Sites were selected to capture a range of nutrient conditions, with 136 sites distributed over five study areas. Samples were collected in either 2003 or 2004, and analyzed for nutrients (nitrogen and phosphorous) and algal biomass (chlorophyll a). Chlorophyll a was measured in three types of samples, fine-grained benthic material (CHL(FG)), coarse-grained stable substrate as in rock or wood (CHL(CG)), and water column (CHL(S)). Stream and riparian habitat were characterized at each site. TP ranged from 0.004-2.69 mg/l and TN from 0.15-21.5 mg/l, with TN concentrations highest in Nebraska and Indiana streams and TP highest in Nebraska. Benthic algal biomass ranged from 0.47-615 mg/m(2), with higher values generally associated with coarse-grained substrate. Seston chlorophyll ranged from 0.2-73.1 mu g/l, with highest concentrations in Nebraska. Regression models were developed to predict algal biomass as a function of TP and/or TN. Seven models were statistically significant, six for TP and one for TN; r (2) values ranged from 0.03 to 0.44. No significant regression models could be developed for the two study areas in the Midwest. Model performance increased when stream habitat variables were incorporated, with 12 significant models and an increase in the r (2) values (0.16-0.54). Water temperature and percent riparian canopy cover were the most important physical variables in the models. While models that predict algal chlorophyll a as a function of nutrients can be useful, model strength is commonly low due to the overriding influence of stream habitat. Results from our study are presented in context of a nutrient-algal biomass conceptual model.

DOI
Journal Article

Abstract  As part of the USGS study of nutrient enrichment of streams in agricultural regions throughout the United States, about 30 sites within each of eight study areas were selected to capture a gradient of nutrient conditions. The objective was to develop watershed disturbance predictive models for macroinvertebrate and algal metrics at national and three regional landscape scales to obtain a better understanding of important explanatory variables. Explanatory variables in models were generated from landscape data, habitat, and chemistry. Instream nutrient concentration and variables assessing the amount of disturbance to the riparian zone (e.g., percent row crops or percent agriculture) were selected as most important explanatory variable in almost all boosted regression tree models regardless of landscape scale or assemblage. Frequently, TN and TP concentration and riparian agricultural land use variables showed a threshold type response at relatively low values to biotic metrics modeled. Some measure of habitat condition was also commonly selected in the final invertebrate models, though the variable(s) varied across regions. Results suggest national models tended to account for more general landscape/climate differences, while regional models incorporated both broad landscape scale and more specific local-scale variables.

Filter Results