Nutrient Stressors and Biological Responses

Project ID

2796

Category

Other

Added on

April 9, 2019, 5:25 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  This report describes the effects of urbanization on physical, chemical, and biological characteristics of stream ecosystems in 28 basins along an urban land-use gradient in the South Platte River Basin, Colorado and Wyoming, from 2002 through 2003. Study basins were chosen to minimize natural variability among basins due to factors such as geology, elevation, and climate and to maximize coverage of different stages of urban development among basins. Because land use or population density alone often are not a complete measure of urbanization, land use, land cover, infrastructure, and socioeconomic variables were integrated in a multimetric urban intensity index to represent the degree of urban development in each study basin. Physical characteristics studied included stream hydrology, stream temperature, and habitat; chemical characteristics studied included nutrients, pesticides, suspended sediment, sulfate, chloride, and fecal bacteria concentrations; and biological characteristics studied included algae, fish, and invertebrate communities. Semipermeable membrane devices (SPMDs), passive samplers that concentrate trace levels of hydrophobic organic contaminants like polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), also were used. The objectives of the study were to (1) examine physical, chemical, and biological responses along the gradient of urbanization; (2) determine the major physical, chemical, and landscape variables affecting the structure of aquatic communities; and (3) evaluate the relevance of the results to the management of water resources in the South Platte River Basin. Commonly observed effects of urbanization on instream physical, chemical, and biological characteristics, such as increased flashiness, higher magnitude and more frequent peak flows, increased concentrations of chemicals, and changes in aquatic community structure, generally were not observed in this study. None of the hydrologic, temperature, habitat, or chemical variables were correlated strongly (Spearman's rho greater than or equal to 0.7) with urban intensity, with the exception of some of the SPMD-based toxicity and chemical variables. SPMD-based measures of potential toxicity and PAH concentrations were positively correlated with urban intensity. The PAH concentrations also were positively correlated with measures of road density and negatively correlated with distance to the nearest road, indicating that automobile exhaust is a major source of these compounds in the study area. This source may be localized enough that the transport of PAHs would be minimally affected by water-management practices such as diversion or storage upstream. In contrast, the predominant sources of nutrients, bacteria, suspended sediment, sulfate, chloride, and pesticides may be more dispersed throughout the drainage area and, therefore, their transport to downstream sites may be subject to greater disruption by water regulation. Although no direct link was found between most water-chemistry characteristics and urbanization, invertebrate, algae, and fish-community characteristics were strongly associated with nutrients, pesticides, sulfate, chloride, and suspended sediment. None of the biological community variables were strongly correlated with the urban intensity index. Algal biomass predominantly was associated with total nitrogen concentrations, nitrite-plus-nitrate concentrations, and the duration of high flows. Fish communities predominantly were associated with housing age, the percentage of suspended sediment finer than 0.063 millimeters and chloride concentrations. Invertebrate communities predominantly were associated with the frequency of rising and falling flow events, the duration of high flows, total nitrogen concentrations, nitrite-plus-nitrate concentrations, and total herbicide concentrations. Historical records indicate that aquatic communities in the region may have been altered prior to any substantial urban development by early agricultural and water-management practices. Present-day aquatic communit es are composed primarily of tolerant species even in areas of minimal urban development; when development does occur, the communities already may be resistant to disturbance. In addition to the effects of historical stressors on aquatic community structure, it is possible that current water-management practices in the study basins are having an effect. In the absence of natural, unaltered hydrologic conditions, more sensitive taxa may be unable to recolonize urban streams. The movement and storage of water also may lead to a disconnect between the land surface and streams, resulting in instream physical, chemical, and biological characteristics that, to some degree, are independent of land-cover characteristics.

DOI
Journal Article

Abstract  The species composition of benthic diatoms was related to environmental conditions in streams throughout the western US to develop diatom traits, indicators for assessment of biological condition and indicators for diagnosing stressors. We hypothesized that indicators based on species traits determined for subsets of streams with similar natural landscape features would be more precisely related to environmental conditions than would be indicators calculated based on species traits for all Streams in the data set. The ranges of many environmental conditions were wide among western streams, and these conditions covaried greatly along a major environmental gradient characterized by positive correlations among % watershed disturbed by agricultural and urban land uses (% WD), conductivity, total N, total P, and % fine sediments. Species traits were calculated for 242 diatom taxa. Weighted average (WA) methods were used to define species environmental optima, and regression approaches were used to determine whether species were sensitive or tolerant to environmental conditions indicated by % WD, total P, total N, a nutrient multivariate index, pH, conductivity, % fine sediments, % embeddedness, and a watershed disturbance multivariate index. Indicators based on WA optima and sensitive/tolerant traits were highly correlated with these environmental conditions. Natural and anthropogenic conditions varied greatly among classes of streams grouped by climate regions, but indicators developed for the entire western US were consistently more accurate than were regional indicators. Indicators for individual stressors, such as total P, conductivity, and % embeddedness, were highly correlated with values of respective stressors, but covariation among all indicators and stressors indicated that only 1 environmental gradient was reliably reflected by the indicators. Thus, robust indicators of the biological condition of diatom assemblages were developed for streams of the western US, but development of stressor-specific indicators will require application of additional analytical approaches.

DOI
Journal Article

Abstract  1. Algal-community metrics were calculated for periphyton samples collected from 976 streams and rivers by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Programme during 1993-2001 to evaluate national and regional relations with water chemistry and to compare whether algal-metric values differ significantly among undeveloped and developed land-use classifications.

2. Algal metrics with significant positive correlations with nutrient concentrations included indicators of trophic condition, organic enrichment, salinity, motility and taxa richness. The relative abundance of nitrogen-fixing algae was negatively correlated with nitrogen concentrations, and the abundance of diatom species associated with high dissolved oxygen concentrations was negatively correlated with both nitrogen and phosphorus concentrations. Median algal-metric values and nutrient concentrations were significantly lower at undeveloped sites than those draining agricultural or urban catchments.

3. Total algal biovolume did not differ significantly among major river catchments or land-use classifications, and was only weakly correlated with nitrate (positive) and suspended-sediment (negative) concentrations. Estimates of periphyton chlorophyll a indicated an oligotrophic-mesotrophic boundary of about 21 mg m(-2) and a mesotrophic-eutrophic boundary of about 55 mg m(-2) based on upper and lower quartiles of the biovolume data distribution.

4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

DOI
Journal Article

Abstract  P>1. Abundance and composition of periphyton and benthic macroinvertebrates were treated as potential nutrient response variables for 74 streams in montane Colorado. The streams ranged from unenriched to mildly enriched with nutrients (N, P).

2. The study showed no meaningful relationship between periphyton biomass accumulation and concentrations of total or dissolved forms of nitrogen or phosphorus. Nutrient concentrations were also unrelated to periphyton and macroinvertebrate richness, diversity and community composition. Macroinvertebrate communities did, however, show a strong positive relationship to periphyton abundance.

3. A positive response of periphyton biomass to increasing nutrient concentrations has been well documented over large ranges of nutrient concentrations. Our study suggests that the nutrient response is suppressed by other controlling factors on the lower limb of the nutrient response curve (i.e. at low nutrient concentrations); a quantitatively significant response occurs only in excess of a threshold beyond which nutrients become dominant over other controlling factors. This interpretation of the results is consistent with published meta-analyses showing lack of nutrient response for a high proportion of experimentally enriched periphyton communities, and division of responses between N and P for communities that do show growth in response to enrichment.

4. Grazing probably is not the key controlling variable for periphyton in Colorado mountain streams, given that the highest chlorophyll concentrations are associated with the highest abundances of macroinvertebrates. Modelling indicates that the initial amount of periphyton biomass at the start of the growing season, in conjunction with elevation-related length of the growing season and water temperature, explains most of the variation in periphyton accumulation among these streams, but there is a yet unexplained suppression of periphyton growth rates across all elevations.

Journal Article

Abstract  Increased nutrient concentrations in streams and rivers have altered biological Structure and function. Manipulative studies have provided insights into different mechanisms by which changes in nutrient concentrations influence aquatic biota. but these studies are limited in spatial scope and in their quantification of nutrient effects oil aggregate measures of the invertebrate assemblage. Observational data provide it complementary Source of information to manipulative studies, but these data must be analyzed Such that the potential effects Of Spurious correlations are minimized. Propensity scores, a technique developed to analyze human health observational data, are applied here to estimate the effects of increased nutrients oil the total taxon richness of stream invertebrates in a large observational data set collected from the western United States. The analysis indicates that increases in nutrient concentration are strongly associated with and Cause decreases in invertebrate richness ill large, but wadeable, open-canopied streams. These decreases in invertebrate richness were not mediated by periphyton biomass, a commonly proposed mechanism by which nutrients influence invertebrates. fit smaller, closed-canopied streams, increases in nutrients Were associated with small increases in total richness that were not statistically significant. Using propensity scores can greatly improve the accuracy of insights drawn from observational data by minimizing the potential that factors other than the factor of interest may Confound the results.

Filter Results