Nutrient Stressors and Biological Responses

Project ID

2796

Category

Other

Added on

April 9, 2019, 5:25 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Nutrient availability influences growth, productivity, and community structure of primary producers. Nutrient limitation, however, results from a deficiency mainly in nitrogen (N) or phosphorus (P) levels relative to cellular growth needs. Limitation is a function of biotic and abiotic factors, the latter including land-use activities (e.g., agriculture, septic systems) and underlying bedrock features. The purpose of this study was twofold: (1) to assess the relationship between algal biomass and ambient nutrient levels along the longitudinal course of a river through a transition from weak to well-developed underlying karst bedrock and (2) experimentally assess if periphyton was N- or P-limited between weak and well-developed karst reaches. Sestonic and Cladophora biomass (=chlorophyll-a) levels increased sharply along the longitudinal gradient. Cladophora biomass, in particular, was strongly correlated with nitrate levels. In contrast, periphyton biomass (=chlorophyll-a) levels were sporadic and did not display a longitudinal pattern. With the exception of ammonia, individual nutrient levels generally increased longitudinally and were higher in the downstream karst reaches. Total N/total P ratios also increased longitudinally and were >25 throughout the study region, suggesting P limitation. The results of the nutrient limitation studies, however, coupled with high concentrations of both N and P throughout the study reach in excess of eutrophication thresholds, suggest that total nutrients are not limiting within the study region. Overall, Kentucky's upper Green River appears to be a nutrient-enriched, eutrophic system and particularly in the downstream, well-developed karst reaches.

DOI
Journal Article

Abstract  Responses of stream algal biomass to nutrient enrichment were studied in two regions where differences in hydrologic variability cause great differences in herbivory. Around northwestern Kentucky (KY) hydrologic variability constrains invertebrate biomass and their effects on algae, but hydrologic stability in Michigan (MI) streams permits accrual of high herbivore densities and herbivory of benthic algae. Multiple indicators of algal biomass and nutrient availability were measured in 104 streams with repeated sampling at each site over a 2-month period. Many measures of algal biomass and nutrient availability were positively correlated in both regions, however the amount of variation explained varied with measures of biomass and nutrient concentration and with region. Indicators of diatom biomass were higher in KY than MI, but were not related to nutrient concentrations in either region. Chl a and % area of substratum covered by Cladophora were positively correlated to nutrient concentrations in both regions. Cladophora responded significantly more to nutrients in MI than KY. Total phosphorus (TP) and total nitrogen (TN) explained similar amounts of variation in algal biomass, and not significantly more variation in biomass than dissolved nutrient concentrations. Low N:P ratios in the benthic algae indicated N as well as P may be limiting their accrual. Most observed responses in benthic algal biomass occurred in nutrient concentrations between 10 and 30 mu g TP l(-1) and between 400 and 1000 mu g TN l(-1).

DOI
Journal Article

Abstract  In this study we manipulated both nitrogen and phosphorus concentrations in stream mesocosms to develop quantitative relationships between periphytic algal growth rates and peak biomass with inorganic N and P concentrations. Stream water from Harts Run, a 2nd order stream in a pristine catchment, was constantly added to 36 stream-side stream mesocosms in low volumes and then recirculated to reduce nutrient concentrations. Clay tiles were colonized with periphyton in the mesocosms. Nutrients were added to create P and N concentrations ranging from less than Harts Run concentrations to 128 mu g SRP l(-1) and 1024 mu g NO3-N l(-1)supercript stop. Algae and water were sampled every 3 days during colonization until periphyton communities reached peak biomass and then sloughed. Nutrient depletion was substantial in the mesocosms. Algae accumulated in all streams, even streams in which no nutrients were added. Nutrient limitation of algal growth and peak biomass accrual was observed in both low P and low N conditions. The Monod model best explained relationships between P and N concentrations and algal growth and peak biomass. Algal growth was 90% of maximum rates or higher in nutrient concentrations 16 mu g SRP l(-1) and 86 mu g DIN l(-1). These saturating concentrations for growth rates were 3-5 times lower than concentrations needed to produce maximum biomass. Modified Monod models using both DIN and SRP were developed to explain algal growth rates and peak biomass, which respectively explained 44 and 70% of the variance in algal response.

DOI
Journal Article

Abstract  Water resource managers face increasing challenges in identifying what physical and chemical stressors are responsible for the alteration of biological conditions in streams. The objective of this study was to assess the comparative influence of multiple stressors on benthic diatoms at 98 sites that spanned a range of stressors in an agriculturally dominated region in the upper Midwest, USA. The primary stressors of interest included: nutrients, herbicides and fungicides, sediment, and streamflow; although the influence of physical habitat was incorporated in the assessment. Boosted Regression Tree was used to examine both the sensitivity of various diatom metrics and the relative importance of the primary stressors. Percent Sensitive Taxa, percent Highly Motile Taxa, and percent High Phosphorus Taxa had the strongest response to stressors. Habitat and total phosphorous were the most common discriminators of diatom metrics, with herbicides as secondary factors. A Classification and Regression Tree (CART) model was used to examine conditional relations among stressors and indicated that fine-grain streams had a lower percentage of Sensitive Taxa than coarse-grain streams, with Sensitive Taxa decreasing further with increased water temperature (>30 °C) and triazine concentrations (>1500 ng/L). In contrast, streams dominated by coarse-grain substrate contained a higher percentage of Sensitive Taxa, with relative abundance increasing with lower water temperatures (<29 °C) and shallower water depth (<0.3 m). Quantile regression indicated that maximum water temperature appears to be a major limiting factor in Midwest streams; whereas both total phosphorus and percent fines showed a slight subsidy-stress response. While using benthic algae for assessing stream quality can be challenging, field-based studies can elucidate stressor effects and interactions when the response variables are appropriate, sufficient stressor resolution is achieved, and the number and type of sites represent a gradient of stressor conditions and at least a quasi-factorial design. © 2017

DOI
Journal Article

Abstract  1. Algal-community metrics were calculated for periphyton samples collected from 976 streams and rivers by the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Programme during 1993-2001 to evaluate national and regional relations with water chemistry and to compare whether algal-metric values differ significantly among undeveloped and developed land-use classifications.

2. Algal metrics with significant positive correlations with nutrient concentrations included indicators of trophic condition, organic enrichment, salinity, motility and taxa richness. The relative abundance of nitrogen-fixing algae was negatively correlated with nitrogen concentrations, and the abundance of diatom species associated with high dissolved oxygen concentrations was negatively correlated with both nitrogen and phosphorus concentrations. Median algal-metric values and nutrient concentrations were significantly lower at undeveloped sites than those draining agricultural or urban catchments.

3. Total algal biovolume did not differ significantly among major river catchments or land-use classifications, and was only weakly correlated with nitrate (positive) and suspended-sediment (negative) concentrations. Estimates of periphyton chlorophyll a indicated an oligotrophic-mesotrophic boundary of about 21 mg m(-2) and a mesotrophic-eutrophic boundary of about 55 mg m(-2) based on upper and lower quartiles of the biovolume data distribution.

4. Although algal species tolerance to nutrient and organic enrichment is well documented, additional taxonomic and autecological research on sensitive, endemic algal species would further enhance water-quality assessments.

Filter Results