PFAS 150

Project ID

2826

Category

PFAS

Added on

Aug. 14, 2019, 6:42 a.m.

Search the HERO reference database

Query Builder

Search query
Technical Report

Abstract  BIOSIS COPYRIGHT: BIOL ABS. RRM ABSTRACT ASPARTATE PHENYLALANINE TYROSINE METHANOL VALINE

Journal Article

Abstract  Epilepsy has many causes and comorbidities affecting as many as 4% of people in their lifetime. Both idiopathic and symptomatic epilepsies are highly heritable, but genetic factors are difficult to characterize among humans due to complex disease etiologies. Rodent genetic studies have been critical to the discovery of seizure susceptibility loci, including Kcnj10 mutations identified in both mouse and human cohorts. However, genetic analyses of epilepsy phenotypes in mice to date have been carried out as acute studies in seizure-naive animals or in Mendelian models of epilepsy, while humans with epilepsy have a history of recurrent seizures that also modify brain physiology. We have applied a repeated seizure model to a genetic reference population, following seizure susceptibility over a 36-d period. Initial differences in generalized seizure threshold among the Hybrid Mouse Diversity Panel (HMDP) were associated with a well-characterized seizure susceptibility locus found in mice: Seizure susceptibility 1 Remarkably, Szs1 influence diminished as subsequent induced seizures had diminishing latencies in certain HMDP strains. Administration of eight seizures, followed by an incubation period and an induced retest seizure, revealed novel associations within the calmodulin-binding transcription activator 1, Camta1 Using systems genetics, we have identified four candidate genes that are differentially expressed between seizure-sensitive and -resistant strains close to our novel Epileptogenesis susceptibility factor 1 (Esf1) locus that may act individually or as a coordinated response to the neuronal stress of seizures.

Journal Article

Abstract  We investigated the characteristics of the flurothyl-induced seizures and the effects of antiepileptic drugs on the flurothyl-induced seizure model in a previously untested Mongolian gerbil species. Mongolian gerbils demonstrated tonic extension immediately after or within 1 min after the appearance of clonic convulsion. Very high amplitude spike waves appeared in these regions concurrent with the appearance of clonic convulsion. When the tonic extension appeared immediately after the clonic convulsion, the high amplitude spike waves continued during tonic convulsion. When the tonic extension occurred, high amplitude spike waves appeared in these three regions within a very short time, and afterward Mongolian gerbils died. Administration of valproic acid-Na (200 mg/kg), ethosuximide (100 and 200 mg/kg), clonazepam (2 mg/kg) and diazepam (0.5, 1 and 2 mg/kg) significantly prolonged the latency of clonic convulsion. Zonisamide-Na, phenytoin and carbamazepine, however, had no such effect. In Mongolian gerbils, tonic extension was demonstrated immediately after the appearance of clonic convulsion, yet, this effect was inhibited by all these drugs in a dose-dependent manner. Diazepam completely blocked the appearance of any behavioral changes in animals. These findings suggest that diazepam has a significant effect on flurothyl-induced seizures. Flurothyl-induced convulsions are associated with GABA receptors; hence, benzodiazepine (BDP) suppression may result from the strong relation between BDP and GABAnergic neurons.

Journal Article

Abstract  Although electroconvulsive therapy (ECT) remains an important therapy for severe depression, its mechanism of action remains elusive. We previously demonstrated that there is a significant increase of interstitial dopamine of neuronal origin in the rat striatum after electroconvulsive shock (ECS) but not after chemically (flurothyl) induced seizures. The present studies examined how electrode placement, stimulus intensity, and the administration of an anticonvulsant affect ECS-induced dopamine release in the rat striatum. Bilateral electrode placement resulted in greater dopamine release than that produced by a unilaterally applied stimulus. Pretreatment with sodium pentobarbital markedly decreased seizure duration but had no effect on the magnitude of the increase in interstitial dopamine. Finally, a higher voltage applied longer resulted in greater dopamine release without a concomitant increase in seizure duration. These data suggest that the passage of current may be directly responsible for certain ECS-induced chemical changes. These findings are discussed in the context of clinical observations that challenge the traditional view that the production of generalized seizures of adequate duration is both necessary and sufficient for a therapeutic response to ECT.

WoS
Journal Article

Abstract  Rationale: Intractable seizure syndromes in children are often associated with brain anomalies. We introduce a new model of brain damage induced by prenatal administration of folic acid antagonist methotrexate (MTX), which interferes with DNA synthesis. Methods: Pregnant rat dams were injected with 5 mg/kg of MTX in saline on gestation day 15 (at the time of formation of the neocortex, hippocampus, and striatum). Control rats received equivalent volume of saline. On the day of birth (postnatal day 0; PN0), the offspring were weighed and tattooed. Weight gains were followed up to PN20. Brains were examined for morphology by using thionin stain and GAD67 immunohistochemistry. The animals were also tested for seizure susceptibility by using flurothyl (PN15, 30, and 60) or hippocampal kindling (PN15). Results: There were no differences in the maternal weight between saline- and MTX-treated rat dams. However, the weight gain of the MTX-exposed offspring was slower through PN0-16, but not at PN18-20, compared with saline-exposed offspring. In MTX-exposed rats, thionin-stained sections demonstrated irregularities in the neocortical layer II-III and IV-V boundaries. In PN15 rats, GAD67 immunostaining revealed clusters of GAD67-positive cells in the neocortex with stained processes radial to the neocortical surface. Moreover, the MTX-exposed rats were more resistant to the development of flurothyl and kindled seizures than were saline exposed controls. Conclusions: Prenatal exposure to MTX induced a consistent decrease in susceptibility to seizures. The data suggest that not all cortical malformations due to prenatal insults are epileptogenic.

Journal Article

Abstract  PURPOSE: Osteopontin is a cytokine found in many tissues and plays a role in tissue injury and repair. This study had two goals: to characterize osteopontin expression after status epilepticus (SE), and to test the hypotheses that osteopontin affects the susceptibility to seizures or alters cell death and inflammation after SE.

METHODS: Pilocarpine was used to induce SE in OPN(-/-) and OPN(+/+) mice to compare seizure susceptibility, neuropathological markers including real time PCR for inflammatory genes, and osteopontin immunohistochemistry. The effect of added osteopontin on excitotoxicity by N-methyl-d-aspartate in neuronal cultures of ONP(-/-) mice was determined.

RESULTS: Neurons undergoing degeneration showed osteopontin immunoreactivity 2-3 days after SE. After 10 to 31 days degenerating axons in the thalamus were osteopontin-positive. The susceptibility to seizures of OPN(-/-) and OPN(+/+) mice in the pilocarpine, fluorothyl, and maximal electroshock models was similar. There were no significant differences in the extent of neuronal damage after pilocarpine-induced SE, the expression of several neuropathological markers or the RNA levels of selected inflammatory genes. Recombinant and natural bovine osteopontin did not affect the extent of NMDA-induced cell death in OPN(-/-) mouse neuronal cultures.

CONCLUSION: We demonstrated that osteopontin is up-regulated in response to SE in distinct temporal sequences in the hippocampus, specifically in degenerating neurons and axons. However, osteopontin did not appear to regulate neurodegeneration or inflammation within the first 3 days after SE.

Journal Article

Abstract  The effects of single and repeated seizures on luteinizing hormone (LH), follicle stimulating hormone (FSH) and prolactin secretion and on the onset of sexual maturation in rats are described. In addition, the influence of convulsions generated electrically (electroconvulsive shock, ECS) and chemically (using flurothyl) are compared. Repeated flurothyl convulsions and ECS (one daily convulsion from age 24 days) significantly delay vaginal opening in female rats. The incidence of first ovulation at maturation is reduced to 20% compared with 70-100% for untreated groups. Body and adrenal weights in immature rats are not modified by flurothyl convulsions. Repeated ECS does not influence adrenal weight although somatic growth is inhibited. In an effort to clarify the mechanism of action of convulsions on puberty onset, we examined acute changes in LH, FSH and prolactin secretion and the surge response of LH/FSH to gonadal steroid priming. A single flurothyl convulsion potently inhibits prolactin secretion. In contrast, an ECS acutely stimulates prolactin release in male and female rats. Convulsive seizures do not consistently alter tonic gonadotropin output. However, both flurothyl convulsions and ECS attenuate estradiol benzoate/progesterone-induced LH and FSH surges in ovariectomized rats though this is apparently not mediated by dopamine/prolactin since bromocriptine treatment delays sexual maturation without preventing ovulation at first estrus. Similarly, bromocriptine does not disrupt LH/FSH surges induced by gonadal steroid treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

Journal Article

Abstract  We have investigated whether sexual maturation in female rats is affected by repeated flurothyl-induced convulsions. This treatment had no effect on the normal age-related increase in body weight though puberty (vaginal opening) was significantly delayed when compared with non-convulsed control rats. In an attempt to probe the mechanism of this delaying effect we observed that (1) anterior pituitary response to gonadotrophin releasing hormone in vitro was normal in terms of LH release but FSH secretion was impaired and (2) progesterone injection in oestrogen-primed convulsed rats failed to generate an ovulatory-type surge of LH or FSH. Basal serum levels and basal in-vitro secretion of LH and FSH were normal. We conclude that repeated convulsions adversely affect the hypothalamo-pituitary-gonadotrophin system of immature female rats.

Journal Article

Abstract  It is assumed that when anticonvulsants arrest seizure, there is rapid return of brain high energy phosphates and brain lactate to control values. To test this hypothesis, diazepam was administered to neonatal dogs during flurothyl-induced seizure. In vivo 31P nuclear magnetic resonance spectroscopy disclosed that diazepam quickly arrested electrographic seizure and restored brain phosphocreatine and inorganic phosphate to baseline values. In contrast, in vivo 1H nuclear magnetic resonance spectroscopic measurements showed that arrest of seizure with diazepam did not return brain lactate to control values. The sustained increase in cerebral blood flow and prolonged elevation of brain lactate, acetate, valine, and succinate in the postictal period indicate that metabolic recovery of the brain occurs over an extended period of time after the normalization of EEG, phosphocreatine, and brain pH.

Journal Article

Abstract  The effect of compression rate on onset of high-pressure convulsions has been studied in 14 vertebrate species, as well as in 10 mouse strains and 4 rat strains. Compression rate effects were observed in 9 of the 14 species. They appear to be independent of exposure temperature, correlate only very loosely with phylogenetic position, and appear to reflect species-specific compensatory mechanisms grafted onto an underlying convulsion-producing effect of high hydrostatic pressure. Five vertebrate species distributed among three of the four classes tested failed to show a significant degree of compression rate dependence of high-pressure neurological syndrome (HPNS) convulsion thresholds. The implications of this finding for the formulation of hypotheses regarding the biophysical basis for HPNS convulsions has been discussed. Comparison of intrinsic HPNS susceptibility in different species, in the light of these findings, requires that the comparison be made at a common compression rate. Four of the five lower vertebrate species fall consistently into the category showing high HPNS convulsion threshold pressures regardless of the compression rate employed, whereas the two primates and the one carnivore tested equally consistently fall in the low convulsion threshold pressure category. The data suggest a parallel between the degree of brain development and the relative HPNS susceptibility of a given species and contrast with the inverse relations observed during maturation of newborn mice and rats. The results are compared with data for other convulsants and suggest grouping HPNS and pentylenetetrazole seizures as against electroshock, hyperoxic, flurothyl, strychine, or picrotoxin convulsions.

Journal Article

Abstract  Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.

Journal Article

Abstract  1 Rats were convulsed once daily for 7 days by exposure to the inhalant convulsant agent, flurothyl (Indoklon, bis (2,2,2-trifluouroethyl)ether). Twenty four hours after the final convulsion the rats were injected with tranylcypromine (20 mg/kg) followed 30 min later by L-DOPA (50 mg/kg), a procedure which increases brain dopamine concentrations. The flurothyl-treated rats showed a greater locomotor activity response than rats that had not been convulsed.2 This enhanced response appears to be due to increased postsynaptic dopamine receptor sensitivity since flurothyl-treated rats also showed enhanced locomotor responses to methamphetamine (2 mg/kg) and apomorphine (2 mg/kg).3 Enhanced 5-hydroxytryptamine-induced activity responses following administration of tranylcypromine (20 mg/kg) and L-tryptophan (50 mg/kg) were also seen 24 h after the last of 10 daily flurothyl-induced convulsions.4 The increased 5-hydroxytryptamine response also appears to be due to increased postsynaptic sensitivity since the flurothyl-treated rats showed increased hyperactivity following administration of tranylcypromine (20 mg/kg) and the suggested 5-hydroxytryptamine agonist, 5-methoxy N,N-dimethyltryptamine (2 mg/kg).5 No change in the brain concentration of 5-hydroxytryptamine, 5-hydroxyindoleacetic acid, tryptophan, dopamine or noradrenaline was observed 24 h after the last of 10 daily flurothyl-induced convulsions, compared to untreated rats. The rate of 5-hydroxytryptamine accumulation after tranylcypromine/L-tryptophan treatment and of dopamine and noradrenaline accumulation after tranylcypromine/L-DOPA treatment was similar in both groups.6 Repeated flurothyl convulsion has the same effects on these behavioural tests as repeated electroconvulsive shock. Since both treatments have been used successfully to treat depression, it is suggested that the mechanism of action of electroconvulsive therapy may be by increasing postsynaptic responses to the monoamine neurotransmitters.

Journal Article

Abstract  Previous seizure models have demonstrated genetic differences in generalized seizure threshold (GST) in inbred mice, but the genetic control of epileptogenesis is relatively unexplored. The present study examined, through analysis of inbred strains of mice, whether the seizure characteristics observed in the flurothyl kindling model are under genetic control. Eight consecutive, daily generalized seizures were induced by flurothyl in mice from five inbred strains. Following a 28-day rest period, mice were retested with flurothyl. The five strains of mice demonstrated inter-strain differences in GST, decreases in GST across seizure trials, and differences in the behavioral seizure phenotypes expressed. Since many of the seizure characteristics that we examined in the flurothyl kindling model were dissociable between C57BL/6J and DBA/2J mice, we analyzed these strains in detail. Unlike C57BL/6J mice, DBA/2J mice had a lower GST on trial 1, did not demonstrate a decrease in GST across trials, nor did they show an alteration in seizure phenotype upon flurothyl retest. Surprisingly, [C57BL/6JxDBA/2J] F1-hybrids had initial GST on trial 1 and GST decreases across trials similar to what was found for C57BL/6J, but they did not undergo the alteration in behavioral seizure phenotype that had been observed for C57BL/6J mice. Our data establish the significance of the genetic background in flurothyl-induced epileptogenesis. The [C57BL/6JxDBA/2J] F1-hybrid data demonstrate that initial GST, the decrease in GST across trials, and the change in seizure phenotype differ from the characteristics of the parental strains, suggesting that these phenotypes are controlled by independent genetic loci.

Journal Article

Abstract  Neonatal seizures are associated with a high likelihood of adverse neurological outcomes, including mental retardation, behavioral disorders, and epilepsy. Early seizures typically involve the neocortex, and post-neonatal epilepsy is often of neocortical origin. However, our understanding of the consequences of neonatal seizures for neocortical function is limited. In the present study, we show that neonatal seizures induced by flurothyl result in markedly enhanced susceptibility of the neocortex to seizure-like activity. This change occurs in young rats studied weeks after the last induced seizure and in adult rats studied months after the initial seizures. Neonatal seizures resulted in reductions in the amplitude of spontaneous inhibitory postsynaptic currents and the frequency of miniature inhibitory postsynaptic currents, and significant increases in the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in pyramidal cells of layer 2/3 of the somatosensory cortex. The selective N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate eliminated the differences in amplitude and frequency of sEPSCs and mEPSCs in the control and flurothyl groups, suggesting that NMDA receptors contribute significantly to the enhanced excitability seen in slices from rats that experienced recurrent neonatal seizures. Taken together, our results suggest that recurrent seizures in infancy result in a persistent enhancement of neocortical excitability.

Journal Article

Abstract  Here we studied the long-term effects of neonatal seizures on inhibitory synaptic transmission in somatosensory cortex. We found that recurrent flurothyl-induced seizures result in a marked reduction in amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) and increases of miniature IPSCs interevent intervals. These results indicate that decreasing the inhibitory synaptic strength following neonatal seizures in neocortical neurons is not due to a postsynaptic mechanism.

Journal Article

Abstract  Neonatal seizures can result in long-term adverse consequences including alteration of seizure susceptibility and impairment in spatial memory. However, little is known about the effects of neonatal seizures on developmental changes occurring in synaptic transmission during the first postnatal weeks. The purpose of the present study was to examine the effect of neonatal seizures on several aspects of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in the developing rat hippocampus. Flurothyl was used to induce multiple recurrent seizures in rat pups during the first postnatal days. Whole-cell patch-clamp recordings from the hippocampal CA3 pyramidal cell and extracellular recordings from the CA3 pyramidal cell layer were made in slice preparations. In rats that experienced neonatal seizures the amplitude of spontaneous inhibitory postsynaptic currents at P15-17 was decreased by 27% compared with controls, whereas neither frequency nor the kinetic properties were altered. Neonatal seizures did not affect the timing of the developmental switch in the GABAA signaling from excitatory to inhibitory. None of the studied parameters of glutamatergic postsynaptic currents was different between the flurothyl and control groups, including the amplitude and frequency of the spontaneous excitatory postsynaptic currents, the ratio of the amplitudes and frequencies of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA)-mediated spontaneous postsynaptic currents, and the kinetics of AMPA and NMDA mediated postsynaptic currents in the age groups P8-10 and P15-17. We suggest that the selective depression of the amplitude of GABAergic synaptic responses may contribute to the adverse neurological and behavioral consequences that occur following neonatal seizures.

Journal Article

Abstract  Whereas neonatal seizures are a predictor of adverse neurological outcome, there is controversy regarding whether seizures simply reflect an underlying brain injury or can cause damage. We subjected neonatal rats to a series of 25 brief flurothyl-induced seizures. Once mature the rats were compared with control littermates for spatial learning and activity level. Short-term effects of recurrent seizures on hippocampal excitation were assessed by using the intact hippocampus formation preparation and long-term effects by assessing seizure threshold. Brains were analyzed for neuronal loss, sprouting of granule cell axons (mossy fibers), and neurogenesis. Compared with controls, rats subjected to neonatal seizures had impaired learning and decreased activity levels. There were no differences in paired-pulse excitation or inhibition or duration of afterdischarges in the intact hippocampal preparation. However, when studied as adults, rats with recurrent flurothyl seizures had a significantly lower seizure threshold to pentylenetetrazol than controls. Rats with recurrent seizures had greater numbers of dentate granule cells and more newly formed granule cells than the controls. Rats with recurrent seizures also had sprouting of mossy fibers in CA3 and the supragranular region. Recurrent brief seizures during the neonatal period have long-term detrimental effects on behavior, seizure susceptibility, and brain development.

  • <<
  • 2 of 21
  • >>
Filter Results