PFAS 150

Project ID

2826

Category

PFAS

Added on

Aug. 14, 2019, 6:42 a.m.

Search the HERO reference database

Query Builder

Search query
Journal Article

Abstract  Alpha-methyl dihydroxyphenylalanine (alpha-MeDOPA) and alpha-methyl meta-tyrosine (alpha-MMT) do not lower significantly the convulsion thresholds to hexafluorodiethyl ether in the mouse, whereas reserpine and tetrabenazine produce marked lowering of these thresholds. Other workers have shown that alpha-MeDOPA and alpha-MMT decrease brain norepinephrine concentrations much more than brain 5-hydroxytryptamine concentrations, while reserpine and tetrabenazine decrease the brain level of these two amines in a parallel fashion. Thus, the fact that alpha-MeDOPA and alpha-MMT, even in very large doses, do not lower convulsion thresholds and in some cases raise them suggests that the decline in 5-hydroxytryptamine may be implicated in the lowering of convulsion thresholds produced by reserpine and other, similar agents.

WoS
Technical Report

Abstract  BIOSIS COPYRIGHT: BIOL ABS. RRM ABSTRACT RAT CONVULSANT EPILEPSY

Journal Article

Abstract  Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed adult 129SvEvTac mice to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1h, but not 6h, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared with controls 24h later. There were no differences in freezing one day later for animals that experienced a single seizure 1h after associative learning. We also found that an acute seizure reduced activity levels in an open-field test 2h but not 24h later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge.

Journal Article

Abstract  The long-term effects of seizures on the developing brain is a difficult clinical problem to study since cognitive impairment and behavioral abnormalities may be related to the etiological agent responsible for the seizures, age at time of onset of seizures, the type, frequency, or duration of the seizures, or the antiepileptic drugs used to treat the seizures. Many of these variables can be eliminated by using animal models of epilepsy. Work in our laboratory using the kainic acid (KA) model has demonstrated that status epilepticus in prepubescent and mature rats leads to significant deficits in memory, learning and behavior as adults when compared to control littermates without seizures. These rats also had a high incidence of spontaneous recurrent seizures (SRS) and an increased susceptibility to seizures using kindling and flurothyl. However, younger animals (less than or equal to 20 day old) with KA-induced seizures of similar severity were not associated with later neurological deficits. The immature animals also had a low rate of SRS and did not differ from controls in susceptibility to kindling or flurothyl. Studies using the continuous hippocampal stimulation model of epilepsy have also demonstrated that prolonged seizures in the developing brain are less severe than those in the mature animal. The pathophysiological mechanisms that "protect" the young brain from long-term detrimental effects of prolonged seizures are unknown.

Journal Article

Abstract  For the purpose of investigating the long-term effects of seizures in neonatal rats on spatial learning ability and N-methyl-D-aspartate (NMDA) receptor expression in adult rat brain, a seizure was induced by inhalant flurothyl daily in neonatal Wistar rats from postnatal day 6 (P6). The authors assigned six rats each averagely into the single-seizure group, the recurrent-seizure group (seizures induced in six consecutive days), and the control group. During P60 to P65, the rats were tested for spatial learning ability with the Morris water maze task. On P75, the authors examined protein expression of the NMDA receptor (NR) subunits, NR1, 2A, 2B, 2C, and 2D, in the cerebral cortex and hippocampus by Western blotting analysis. On P65, the escape latencies from the water maze of the rats in the recurrent-seizure group were significantly longer than those of the control rats, but there was no difference between the single-seizure group and the control group. NR subunit expression in the cerebral cortex and hippocampus of the rats with single seizure was similar to those in the control rats. Compared with the control rats, the protein expressions of NR1, NR2A and NR2B in the cerebral cortex and NR2A in the hippocampus of the recurrent-seizure group was significantly decreased, but NR2C protein expression in the cerebral cortex and hippocampus significantly increased. Recurrent seizures induced in neonatal rats might cause long-term spatial learning ability deficit and modify NR expression in the cerebral cortex and hippocampus of adult rats. The results suggest that abnormal NR expression might play an important role in long-term spatial learning ability deficit induced by recurrent seizures in early life.

Journal Article

Abstract  The effect of seizures on subsequent long-term behavior was studied in immature rats. A similar severity of seizures were induced in 20-day old rats (P20) and 45-day old rats (P45) by intraperitoneal injections of pilocarpine at doses of 200 mg/kg and 380 mg/kg, respectively. Immediately after injection of pilocarpine, prolonged seizures with electroencephalographic ictal discharges were observed in both groups of rats. These seizures were followed by seemingly complete neurological recovery. In rats that received pilocarpine at P45 spontaneous recurrent seizures appeared after 4-10 days and persisted until completion of the study at P100. Behavioral tests performed when the rats were fully mature demonstrated that they were more aggressive when handled, more active in open field, and had deficits in learning platform position in the water maze as compared to controls. Furthermore, flurothyl seizure latency was significantly lower in pilocarpine-treated P45 rats than controls. Histology examination showed gross cell loss in the CA3 subfield of the hippocampus in four out of six pilocarpine-treated rats while no cell loss was found in control rats. Rats that received pilocarpine at P20, despite having more severe seizures than the P45 rats, had no histological lesions, did not develop spontaneous recurrent seizures, and had no significant difference in the flurothyl seizure latency test when compared to their controls. While there was no difference between the control and pilocarpine-treated rats in the handling and open field test, P20 rats receiving pilocarpine were slower in learning platform position in the water maze than the controls. Rats receiving pilocarpine at P45 performed significantly more poorly than rats treated at P20 in the water maze. These results suggest that prolonged seizures in immature rats can cause long-term behavioral deficits. However, the severity and nature of these deficits are highly age dependent.

Journal Article

Abstract  Basic fibroblast growth factor has been reported to protect neurons of various structures from excitotoxic damage. To study the effects of basic fibroblast growth factor on seizure-induced brain damage we infused the growth factor into the lateral ventricles of 35-day-old rats receiving convulsant dosages of kainic acid. Artificial cerebrospinal fluid or basic fibroblast growth factor at dosages of 0.5 ng/h or 2.5 ng/h was infused into the lateral ventricle continuously for seven days starting two days before and continuing for five days after the animals had kainic acid-induced status epilepticus. At age 80 days the animals underwent behavioural testing using the water maze, open field, and handling tests and at age 95 days were tested for seizure threshold using flurothyl inhalation. Neither artificial cerebrospinal fluid or basic fibroblast growth factor modified the latency or duration of the acute seizures following kainic acid. However, rats infused with 2.5 ng/h, but not 0.5 ng/h of basic fibroblast growth factor, had fewer spontaneous recurrent seizures, a higher seizure threshold, better performance in the handling, open field and water maze test, and less cell loss in the hippocampus when compared to rats receiving artificial cerebrospinal fluid or 0.5 ng/h of basic fibroblast growth factor. These results show that basic fibroblast growth factor has a dose-related neuroprotective effect against seizure-induced long-term behavioural deficits when administered by osmotic pump prior to seizure onset. This neuroprotective effect is not related to an anticonvulsant effect.

Journal Article

Abstract  There is evidence implicating the nigral gamma-aminobutyric acid (GABA) system in the control of seizures. Our previous studies have demonstrated that, in rat pups, intranigrally infused gamma-vinyl-GABA (GVG, 5-20 micrograms) strongly suppresses flurothyl-induced tonic but not clonic seizures. Furthermore, nigral infusions of bicuculline or muscimol abolish the anticonvulsant effect of GVG. In this study, we report that in adult rats bilateral infusions of GVG (20 micrograms) into the substantia nigra pars reticulata (SNR) significantly elevated the thresholds for both clonic and tonic seizures induced by flurothyl. Lower doses (5 and 10 micrograms) did not significantly protect adult rats against seizures, but there was a significant effect of GVG dose. Unilateral infusion of GVG (20 micrograms) in the SNR did not alter the thresholds for flurothyl-induced seizures. Intranigral infusions of bicuculline following pretreatment with GVG abolished the protective effect of GVG on flurothyl-induced seizures, indicating that the anticonvulsant effect of GVG is most likely mediated by the nigral GABAA receptor. Intranigral administration of muscimol after GVG pretreatment significantly suppressed flurothyl-induced seizures, but the combined effect of the two drugs was not as strong as that of GVG alone. The data suggest that GVG protects adult rats against flurothyl-induced seizures. In adults, however, the dose of GVG required to protect against both clonic and tonic seizures is higher than that needed in rat pup SNR.

Journal Article

Abstract  During flurothyl seizures in 4-day-old rats, cortical concentration of ATP, phosphocreatine and glucose fell while lactate rose. Cortical energy use rate more than doubled, while glycolytic rate increased fivefold. Calculation of the cerebral metabolic balance during sustained seizures suggests that energy balance could be maintained in hyperglycemic animals, and would decline slowly in normoglycemia, but would be compromised by concurrent hypoglycemia, hyperthermia or hypoxia. These results suggest that the metabolic challenge imposed on the brain by this model of experimental neonatal seizures is milder than that seen at older ages, but can become critical when associated with other types of metabolic stress.

Journal Article

Abstract  In adult diabetic patients, periods of hyperglycemia may be associated with exacerbation of focal seizures. Our objective was to determine in the adult rats the correlation between seizure susceptibility and extracellular glucose concentration in two models of seizures. Male rats were injected with two doses of streptozocin (40 mg/kg IP) on 2 consecutive days to induce diabetic hyperglycemia. Controls either received vehicle or were not injected. After 2 weeks, blood glucose concentration was measured, and the rats were subjected to flurothyl seizure test. Another group of rats received glucose solution (20%, 5 ml IP) 30 minutes before testing to induce nondiabetic hyperglycemia. Thresholds for flurothyl-induced clonic and tonic-clonic seizures were determined. Finally, in vitro epileptiform activity was induced in the entorhinal cortex-hippocampal slices from naive rats by perfusing with magnesium-free medium with various glucose concentrations. In additional slices, paired-pulse paradigm was determined in the perforant path. Susceptibility to clonic and tonic-clonic flurothyl-induced seizures positively correlated with blood glucose concentrations as the increased glucose concentration was associated with proconvulsant effects. Similarly, in the in vitro experiments, epileptiform activity was promoted by increased and suppressed by decreased glucose concentrations. Data indicate that, in the adult rats, high glucose concentrations are associated with proconvulsant effects.

Journal Article

Abstract  Neonatal seizures are frequently associated with cognitive impairment and reduced seizure threshold. Previous studies in our laboratory have demonstrated that rats with recurrent neonatal seizures have impaired learning, lower seizure thresholds, and sprouting of mossy fibers in CA3 and the supragranular region of the dentate gyrus in the hippocampus when studied as adults. The goal of this study was to determine the age of onset of cognitive dysfunction and alterations in seizure susceptibility in rats subjected to recurrent neonatal seizures and the relation of this cognitive impairment to mossy fiber sprouting and expression of glutamate receptors. Starting at postnatal day (P) 0, rats were exposed to 45 flurothyl-induced seizures over a 9-day period of time. Visual-spatial learning in the water maze and seizure susceptibility were assessed in subsets of the rats at P20 or P35. Brains were evaluated for cell loss, mossy fiber distribution, and AMPA (GluR1) and NMDA (NMDAR1) subreceptor expression at these same time points. Rats with neonatal seizures showed significant impairment in the performance of the water maze and increased seizure susceptibility at both P20 and P35. Sprouting of mossy fibers into the CA3 and supragranular region of the dentate gyrus was seen at both P20 and P35. GluR1 expression was increased in CA3 at P20 and NMDAR1 was increased in expression in CA3 and the supragranular region of the dentate gyrus at P35. Our findings indicate that altered seizure susceptibility and cognitive impairment occurs prior to weaning following a series of neonatal seizures. Furthermore, these alterations in cognition and seizure susceptibility are paralleled by sprouting of mossy fibers and increased expression of glutamate receptors. To be effective, our results suggest that strategies to alter the adverse outcome following neonatal seizures will have to be initiated during, or shortly following, the seizures.

Journal Article

Abstract  Autism spectrum disorders share three core symptoms: impaired sociability, repetitive behaviors and communication deficits. Incidence is rising, and current treatments are inadequate. Seizures are a common comorbidity, and since the 1920's a high-fat, low-carbohydrate ketogenic diet has been used to treat epilepsy. Evidence suggests the ketogenic diet and analogous metabolic approaches may benefit diverse neurological disorders. Here we show that a ketogenic diet improves autistic behaviors in the BTBR mouse. Juvenile BTBR mice were fed standard or ketogenic diet for three weeks and tested for sociability, self-directed repetitive behavior, and communication. In separate experiments, spontaneous intrahippocampal EEGs and tests of seizure susceptibility (6 Hz corneal stimulation, flurothyl, SKF83822, pentylenetetrazole) were compared between BTBR and control (C57Bl/6) mice. Ketogenic diet-fed BTBR mice showed increased sociability in a three-chamber test, decreased self-directed repetitive behavior, and improved social communication of a food preference. Although seizures are a common comorbidity with autism, BTBR mice fed a standard diet exhibit neither spontaneous seizures nor abnormal EEG, and have increased seizure susceptibility in just one of four tests. Thus, behavioral improvements are dissociable from any antiseizure effect. Our results suggest that a ketogenic diet improves multiple autistic behaviors in the BTBR mouse model. Therefore, ketogenic diets or analogous metabolic strategies may offer novel opportunities to improve core behavioral symptoms of autism spectrum disorders.

Journal Article

Abstract  During pregnancy, mice are more susceptible to flurothyl-induced seizures than are nonpregnant control mice. The potential role of brain GABA in mediating this behavior was examined in the present study. GABA concentrations in the cerebellum, hippocampus, striatum, midbrain, and cortex from individual control, pregnant (days 17-18) and delivery-day Heterogeneous Stock mice were assayed using a fluorometric method. Turnover of GABA was assessed by inhibiting metabolism with aminooxyacetic acid and measuring GABA accumulation over the next 2 h. Steady-state GABA concentrations decreased significantly from control in all brain regions during pregnancy. Reductions in GABA concentrations were approximately 25-30% in the affected regions. At parturition, GABA concentrations in the cerebellum and cortex returned to control levels, but hippocampal, striatal, and midbrain GABA levels remained significantly depressed. All the indices of GABA turnover--first-order rate constant, half-life, initial rate of synthesis, and turnover rate (product of first-order rate constant and initial concentration)--showed a significant reduction in pregnancy, which was continued through the time of delivery in all brain regions except the hippocampus. Half-life values for GABA increased nearly fourfold in the cerebellum and cortex. These results show that there is a significant alteration in GABAergic systems during pregnancy and parturition. We suggest that the reduction in GABA turnover is a compensatory anticonvulsant mechanism to offset the inherent seizure susceptibility brought about by the reduced level of the major inhibitory neurotransmitter in the brain.

Journal Article

Abstract  UNLABELLED: Anesthetics depress the central nervous system, whereas nonimmobilizers (previously called nonanesthetics) and transitional compounds having the same physical properties (e.g., solubility in lipid) do not produce anesthesia (nonimmobilizers) or are less potent anesthetics than might be predicted from their lipophilicity (transitional compounds). Potential explanations for the absent or decreased anesthetic effect of nonimmobilizer and transitional compounds include the theories that the nonimmobilizers are devoid of anesthetic effect and that transitional compounds have a decreased capacity to produce anesthesia; that the effects of these compounds are not apparent because the concentrations examined are too low; or that anesthesia, or lack thereof, results from a balance between depression and excitation (all nonimmobilizer and transitional compounds produce convulsions). To examine these issues further, we tested the effect of various multiples of the convulsive 50% effective dose (ED50) of three nonimmobilizers and one transitional compound on the minimum alveolar anesthetic concentration (MAC) of desflurane in rats. The nonimmobilizer 2,3-dichlorooctafluorobutane (NI-1), from 0.7 to 1.1 times its convulsive ED50, increased the MAC of desflurane by 14%-27%, but at 1.6 times its convulsive ED50 caused no change in MAC; the nonimmobilizer 1,2-dichlorohexafluorocyclobutane (NI-2) did not change MAC at concentrations up to its convulsant ED50, but it increased MAC by 25% and 36% at 1.3 and 1.7 times its convulsant ED50, respectively. The nonimmobilizer flurothyl (NI-3) decreased the MAC of desflurane by 20% +/- 6% (mean +/- SD) at 0.5 times its convulsant ED50, but it caused no change at higher partial pressures (up to 7.8 times its convulsant ED50), and the transitional compound CF3CCl2-O-CF2Cl (T-1) significantly decreased MAC by 16% +/- 7% at 0.8 times its convulsant ED50, but the 6%-8% decreases in MAC at 0.4 and 1.6 times its convulsant ED50 were not significant. Thus, neither nonimmobilizer nor transitional compounds produced a consistent dose-related effect on the MAC of desflurane, and any changes were small. These results suggest that the excitation produced by transitional compounds or nonimmobilizers does not explain their limited ability or inability to produce anesthesia. The data are consistent with a decreased anesthetic efficacy of transitional compounds and the lack of efficacy of nonimmobilizers.

IMPLICATIONS: Inhaled compounds that do not cause anesthesia (nonimmobilizers) are used to test theories of anesthetic action. Their use presumes that a trivial explanation, such as cancelling stimulatory and depressant effects, does not explain the absence of anesthesia. The present results argue against such an explanation.

Journal Article

Abstract  This study examined the effects of electroconvulsive shock (ECS) on striatal interstitial concentrations of the purine metabolite uric acid (UA) using microdialysis in freely moving rats. UA increased to about 200% of baseline following ECS. Intense seizure activity induced by the convulsant agent flurothyl also resulted in a two-fold increase of UA concentrations suggesting that the ECS-induced UA increase is related to the seizure activity per se. Local administration of tetrodotoxin or perfusion with a Ca(2+)-free solution failed to affect the basal or the ECS-induced increase in UA concentrations. These data indicate that both the basal and the stimulated interstitial concentrations of uric acid are not dependent upon neuronal activity and exocytotic release. The UA response to ECS appears to be refractory to a second ECS delivered 2 but not 24 h after the first. Intrastriatal infusion of allopurinol (1 mM), an inhibitor of UA synthesis, decreased basal UA concentrations to 26% but did not influence the ECS-induced UA increase. Systemic injection of allopurinol (20 mg/kg, i.p.) decreased basal UA concentrations to 25% and prevented the ECS-induced UA elevation. ECS also increased serum concentrations of UA to almost 200% of baseline. Allopurinol (20 mg/kg, i.p.) markedly decreased serum UA concentrations to non-detectable levels and completely abolished the ECS-induced increase. The estimated concentration difference between blood and brain interstitial UA strongly suggests that ECS-induced increase in brain interstitial UA concentrations is of peripheral origin possibly due to disruption of the blood brain barrier during seizure activity.

Journal Article

Abstract  The substantia nigra gamma-aminobutyric acid (GABA) system is crucial for seizure control. Our previous work indicates that in 16-day-old rat pups, nigral administration of the GABAA receptor agonist muscimol facilitates flurothyl-induced seizures, whereas it suppresses seizures in adult rats. To determine whether the proconvulsant effect of muscimol in rat pups may be mediated by nigral GABAA receptors, in the present study we applied a selective GABAA receptor agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP). Bilateral nigral infusions of THIP (500 or 700 ng) significantly decreased the thresholds for flurothyl seizures in a dose-dependent fashion. Doses of 350 ng or less did not significantly modify the susceptibility to seizures. An anticonvulsant action of THIP could not be detected at any dose. Administration of an effective THIP dose (500 ng) 2 mm dorsal to the SNR had no influence on seizures. These findings suggest that in rat pups the proconvulsant effect of nigral GABAA receptor agonists may be attributed to unique pharmacologic characteristics of GABAA receptors during development.

Journal Article

Abstract  Rat brains (n = 17) with flurothyl-induced status epilepticus (SE) have been imaged with a gradient-echo diffusion-weighted imaging sequence at 2.0 T. The apparent water diffusion coefficient (ADC) decreased during seizure discharges. The magnitude of the ADC reduction correlated well with the duration of flurothyl exposure. A 17% reduction in the water ADC compared with preseizure condition was observed in rats with the longest flurothyl exposure time. In 13 rats, pentobarbital was used to arrest the electrographic seizure activity. ADC values began to return to normal a few minutes after the injection. In four rats with no pentobarbital administration, ADC values remained depressed up to 1 h after seizure onset. The results suggest that diffusion-weighted MR imaging may be useful for mapping recent intense seizure activity in human patients with medically intractable epilepsy.

Journal Article

Abstract  Behavioral characteristics of seizures have age-dependent features, which suggests that effective treatment of seizures may be age-specific as well. In experiments that used the flurothyl seizure model, we examined the effects of several drugs that affect GABAergic neurotransmission in rats of various ages. Systemic administration of phenobarbital (PB, a drug that enhances GABAA receptor-mediated inhibition) was anticonvulsant in most age groups. In contrast, gamma-vinyl GABA (VGB, a drug that increases endogenous GABA levels and enhances both GABAA and GABAB receptor transmission) did not have anticonvulsant effects. Baclofen (a GABAB receptor agonist) was proconvulsant in 9-day-old rat pups, and anticonvulsant in 15-30-day-old rats and lost its anticonvulsant activity in 60-day-old rats. CGP 35348 (a GABAB receptor antagonist) was proconvulsant in developing rats but not in 60-day-old rats. A novel GABAB receptor antagonist, CGP 36742, was proconvulsant in 9- and 15-day-old rats but had no effects in 30- and 60-day-old rats. These results indicate that the effects of presumed GABAergic agents are not uniform across the age span. The differences may reflect age-dependent maturational changes of GABA receptor subtypes, differential action of the drugs on pre- and postsynaptic sites and possible non-GABAergic effects.

Journal Article

Abstract  INTRODUCTION: We investigated efficacy of prolonged intraventricular gabapentin (GBP) infusion in the rat flurothyl epilepsy model.

METHODS: Sprague-Dawley rats, under anesthesia, were implanted with bilateral Alzet model 2001 osmotic pumps. The pumps infused GBP 80 microg/microL (3.8 mg/day) or isotonic saline control at 1.0 microL/h into each ventricle for 5 days. After 5 days of GBP infusion, seizures were induced by flurothyl dripped onto filter paper. Time to first myoclonic jerk, first partial seizure and first tonic-clonic seizure was recorded by an observer unaware of the treatment group. Determination of seizures was behavioral.

RESULTS: Data were obtained from 54 rats. First tonic-clonic seizure was at 295.8+/-58.8s (n=28) for control rats, versus 338.0+/-89.9 s (n=26) for rats with GBP in the pump (p=0.049). First myoclonic jerk occurred at 158.7+/-20.8 versus 164.6+/-33.5 s (p=0.44, n.s.). Regression of time to seizure versus weight was not significant. No animal had measurable serum levels (<1 microg/ml) of GBP. The distribution of GBP in brain was not studied, but qualitative observations of methylene blue dye installed in the pumps showed dye in periventricular white matter and also over cortex, especially ipsilaterally.

DISCUSSION: GBP instilled into the lateral ventricles by pump for 5 days delays onset of generalized tonic-clonic seizures produced by flurothyl in the rat. Time to first myoclonic or partial seizure was not influenced. Effects were not due to systemic absorption of GBP. This study provides a proof-in-principle for intraventricular therapy with AEDs.

  • <<
  • 6 of 21
  • >>
Filter Results