WFLC - CAIF Report

Project ID

3013

Category

Other

Added on

Dec. 14, 2020, 8:58 a.m.

Search the HERO reference database

Query Builder

Search query
DOI
Journal Article

Abstract  Four years of severe drought from 1999 through 2003 led to unprecedented bark beetle activity in ponderosa and Jeffrey pine in the San Bernardino and San Jacinto Mountains of southern California. Pines in the San Bernardino Mountains also were heavily impacted by ozone and nitrogenous pollutants originating from urban and agricultural areas in the Los Angeles basin. We studied bark beetle activity and bark beetle associated tree mortality in pines at two drought-impacted sites in the San Bernardino Mountains, one receiving high levels of atmospheric pollutants, and one with more moderate atmospheric input. We also investigated the effects of nitrogen addition treatments of 0, 50 and 150 kg N ha-1 year-1 at each site. Tree mortality and beetle activity were significantly higher at the high pollution site. Differences in beetle activity between sites were significantly associated with ozone injury to pines, while differences in tree mortality between sites were significantly associated with both ozone injury and fertilization level. Tree mortality was 9% higher and beetle activity 50% higher for unfertilized trees at the high pollution site compared to the low pollution site. Tree mortality increased 8% and beetle activity increased 20% under the highest rates of nitrogen additions at the low pollution site. The strong response in beetle activity to nitrogen additions at the low pollution site suggests that atmospheric nitrogen deposition increased tree susceptibility to beetle attack at the high deposition site. While drought conditions throughout the region were a major factor in decreased tree resistance, it appears that both ozone exposure and atmospheric nitrogen deposition further increased pine susceptibility to beetle attack.

Archival Material

Abstract  AirNow is your one-stop source for air quality data. Our recently redesigned site highlights air quality in your local area first, while still providing air quality information at state, national, and world views. A new interactive map even lets you zoom out to get the big picture or drill down to see data for a single air quality monitor. AirNow reports air quality using the official U.S. Air Quality Index (AQI), a color-coded index designed to communicate whether air quality is healthy or unhealthy for you. When you know the AQI in your area, you can take steps to protect your health. AirNow is a partnership of the U.S. Environmental Protection Agency, National Oceanic and Atmospheric Administration (NOAA), National Park Service, NASA, Centers for Disease Control, and tribal, state, and local air quality agencies. Complete list of AirNow partners. Agencies all over the country send their monitoring data to AirNow for display. The Department of State provides data from U.S. Embassies and Consulates to inform personnel and citizens overseas, and the U.S. Forest Service and NOAA provide fire and smoke data. AirNow’s centralized data system provides quality control, national reporting consistency, and the ability to distribute data to the public, researchers, businesses, educators, and to other data systems. In AirNow, you’ll find: -Current and forecast air quality maps and data for more than 500 cities across the U.S. -Current and historical data for U.S. Embassies and Consulates around the world -Current fire conditions including fire locations, smoke plumes, and air quality data from permanent and temporary air quality monitors -Air quality data for Canada and Mexico -Enviroflash emails, apps, widgets, and an API -Health and air quality information for +the public +healthcare professionals +teachers and students +weathercasters

WoS
Technical Report

Abstract  Smoke exposure measurements among firefighters at wildfires in the Western United States between 1992 and 1995 showed that although most exposures were not significant, between 3 and 5 percent of the shift-average exposures exceeded occupational exposure limits for carbon monoxide and respiratory irritants. Exposure to benzene and total suspended particulate was not significant, although the data for the latter were limited in scope. The highest short-term exposures to smoke occurred during initial attack of small wildfires, but the shift-average exposures were less during initial attack than those at extended (project) fire assignments because of unexposed time during the shift. Among workers involved in direct attack of actively burning areas and maintaining fireline boundaries, peak exposure situations could be several times greater than recommended occupational exposure limits for short-term exposures. The study found that exposure to acrolein, benzene, formaldehyde, and respirable particulate matter could be predicted from measurements of carbon monoxide. Electrochemical dosimeters for carbon monoxide were the best tool for routinely assessing smoke exposure, so long as quality assurance provisions were included in the monitoring program. Suggested procedures for reducing overexposure to smoke include (1) hazard awareness training, (2) routinely monitoring smoke exposure, (3) evaluating health risks and applicable exposure criteria, (4) improving health surveillance and injury recordkeeping, (5) limiting use of respiratory protection when other mitigation is not feasible, and (6) involving workers, managers, and regulators to develop a smoke exposure management strategy.

DOI
Journal Article

Abstract  Wildfire prevention education efforts involve a variety of methods, including airing public service announcements, distributing brochures, and making presentations, which are intended to reduce the occurrence of certain kinds of wildfires. A Poisson model of preventable Florida wildfires from 2002 to 2007 by fire management region was developed. Controlling for potential simultaneity biases, this model indicated that wildfire prevention education efforts have statistically significant and negative effects on the numbers of wildfires ignited by debris burning, campfire escapes, smoking, and children. Evaluating the expected reductions in wildfire damages given a change in wildfire prevention education efforts from current levels showed that marginal benefits exceed marginal costs statewide by an average of 35-fold. The benefits exceeded costs in the fire management regions by 10- to 99-fold, depending on assumptions about how wildfire prevention education spending is allocated to these regions.

DOI
Journal Article

Abstract  The purpose of this paper is to promote a broad and flexible perspective on ecological restoration of Southwestern (U.S.) ponderosa pine forests. Ponderosa pine forests in the region have been radically altered by Euro‐American land uses, including livestock grazing, fire suppression, and logging. Dense thickets of young trees now abound, old‐growth and biodiversity have declined, and human and ecological communities are increasingly vulnerable to destructive crown fires. A consensus has emerged that it is urgent to restore more natural conditions to these forests. Efforts to restore Southwestern forests will require extensive projects employing varying combinations of young‐tree thinning and reintroduction of low‐intensity fires. Treatments must be flexible enough to recognize and accommodate: high levels of natural heterogeneity; dynamic ecosystems; wildlife and other biodiversity considerations; scientific uncertainty; and the challenges of on‐the‐ground implementation. Ecological restoration should reset ecosystem trends toward an envelope of “natural variability,” including the reestablishment of natural processes. Reconstructed historic reference conditions are best used as general guides rather than rigid restoration prescriptions. In the long term, the best way to align forest conditions to track ongoing climate changes is to restore fire, which naturally correlates with current climate. Some stands need substantial structural manipulation (thinning) before fire can safely be reintroduced. In other areas, such as large wilderness and roadless areas, fire alone may suffice as the main tool of ecological restoration, recreating the natural interaction of structure and process. Impatience, overreaction to crown fire risks, extractive economics, or hubris could lead to widespread application of highly intrusive treatments that may further damage forest ecosystems. Investments in research and monitoring of restoration treatments are essential to refine restoration methods. We support the development and implementation of a diverse range of scientifically viable restoration approaches in these forests, suggest principles for ecologically sound restoration that immediately reduce crown fire risk and incrementally return natural variability and resilience to Southwestern forests, and present ecological perspectives on several forest restoration approaches.

Journal Article

Abstract  Background: Air pollution is known to affect asthma symptoms in controlled and epidemiologic studies. Objective: To determine whether ozone exposure in Seattle is associated with increased use of hospital emergency departments. Methods: Hospital data on daily asthma cases for all ages were obtained for 1998 through 2002. Ozone and fine particulate matter (?2.5 ?m in diameter) (PM2.5) data were obtained from local air agencies. Poisson regression models were used to assess the association between asthma visits to emergency departments and air pollutants. Maximum daily 1- and 8-hour average ozone concentrations and the daily PM2.5 concentration were used. Results: We observed associations between both ozone metrics and emergency department visits in children. For the maximum daily 1- and 8-hour average ozone concentrations, the relative risks (RRs) were 1.08 (95% confidence interval [CI], 1.00-1.18) and 1.11 (95% CI, 1.02-1.21), respectively, at 3 days' lag. Weaker but significant associations were also observed for adults. For the maximum daily 1-hour average ozone concentration, the RR was 1.06 (95% CI, 1.01-1.11) at 4 days' lag, and for the maximum daily 8-hour average ozone concentration, the RR was 1.06 (95% CI, 1.01-1.12) at 2 days' lag and 1.08 (95% CI, 1.02-1.14) at 4 days' lag. Conclusion: Ozone exposure exacerbates asthma in people in the Seattle area, especially in children.

Technical Report

Abstract  This report describes a unique collaboration among investigators from Europe, the United States, and Canada using existing data from three geographic areas and supported by HEI in collaboration with the European Commission. APHENA offered a large and diverse data set with which to address methodological as well as scientific issues about the relationships between PM10, ozone, and mortality and morbidity that were the subject of lively debates at the time the project was launched. Drs. Katsouyanni and Samet and their colleagues undertook a rigorous examination of time-series methods used to model the relationship between daily PM10 and ozone concentrations and daily mortality and hospital admissions. They sought to develop a standardized approach to the analysis of time series data at the city and regional level, to assess the consistency between relative rates of mortality and hospital admissions across Europe and North America when estimated using a common analytic protocol, and to explore possible explanations for any remaining variation in the results that analytic differences could not explain.

Journal Article

Abstract  The recent literature on satellite remote sensing of air quality is reviewed. 2009 is the 50th anniversary of the first satellite atmospheric observations. For the first 40 of those years, atmospheric composition measurements, meteorology, and atmospheric structure and dynamics dominated the missions launched. Since 1995, 42 instruments relevant to air quality measurements have been put into orbit. Trace gases such as ozone, nitric oxide, nitrogen dioxide, water, oxygen/tetraoxygen, bromine oxide, sulfur dioxide, formaldehyde, glyoxal, chlorine dioxide, chlorine monoxide, and nitrate radical have been measured in the stratosphere and troposphere in column measurements. Aerosol optical depth (AOD) is a focus of this review and a significant body of literature exists that shows that ground-level fine particulate matter (PM2.5) can be estimated from columnar AOD. Precision of the measurement of AOD is ±20% and the prediction of PM2.5 from AOD is order ±30% in the most careful studies. The air quality needs that can use such predictions are examined. Satellite measurements are important to event detection, transport and model prediction, and emission estimation. It is suggested that ground-based measurements, models, and satellite measurements should be viewed as a system, each component of which is necessary to better understand air quality. [ABSTRACT FROM AUTHOR] Copyright of Journal of the Air & Waste Management Association (1995) is the property of Air & Waste Management Association and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.

DOI
Journal Article

Abstract  Mobile particulate monitors are being widely used for smoke monitoring throughout the western United States. While this provides valuable additional data for public health decisions, quantifying the field performance of this equipment is necessary to understand measurement limitations when being compared with federal compliance instruments. Met One Instruments, Inc. Environmental Beta Attenuation Monitors (EBAMs) were co-located at permanently established Beta Attenuation Monitor (BAM) sites to determine agreement under normal field operating conditions. Monitors were assessed for agreement between fine particulate matter (PM2.5) measurements. The instruments correlated for hourly (R-2 0.70) and daily (R-2 0.90) means. Mean difference for EBAM to BAM comparison showed the EBAM over-predicting the BAM by 24% (3 mu g m(-3)). Hourly concentrations fluctuated more in the EBAM. Daily mean concentrations were the most equitably comparable measurement for these monitors. Increases in relative humidity (RH) were associated with increased disagreement between monitors. When EBAM internal RH was below 40%, R-2 increased (0.76 hourly, 0.93 daily). The EBAM produced higher hourly AQI estimates. As a result of this study, it is advised to invalidate hourly data when the internal RH is greater than 40% and to only use daily AQI estimates to limit the EBAM AQI over-prediction.

DOI
Journal Article

Abstract  Fires represent an air quality challenge because they are large, dynamic and transient sources of particulate matter and ozone precursors. Transported smoke can deteriorate air quality over large regions. Fire severity and frequency are likely to increase in the future, exacerbating an existing problem. Using the National Environmental Satellite, Data, and Information Service (NESDIS) Hazard Mapping System (HMS) smoke data for North America for the period 2007 to 2014, we examine a subset of fires that are confirmed to have produced sufficient smoke to warrant the initiation of a U.S. National Weather Service smoke forecast. We find that gridded HMS-analyzed fires are well correlated (r = 0.84) with emissions from the Global Fire Emissions Inventory Database 4s (GFED4s). We define a new metric, smoke hours, by linking observed smoke plumes to active fires using ensembles of forward trajectories. This work shows that the Southwest, Northwest, and Northwest Territories initiate the most air quality forecasts and produce more smoke than any other North American region by measure of the number of HYSPLIT points analyzed, the duration of those HYSPLIT points, and the total number of smoke hours produced. The average number of days with smoke plumes overhead is largest over the north-central United States. Only Alaska, the Northwest, the Southwest, and Southeast United States regions produce the majority of smoke plumes observed over their own borders. This work moves a new dataset from a daily operational setting to a research context, and it demonstrates how changes to the frequency or intensity of fires in the western United States could impact other regions.

Journal Article

Abstract  BACKGROUND: Wildfire activity is predicted to increase in many parts of the world due to changes in temperature and precipitation patterns from global climate change. Wildfire smoke contains numerous hazardous air pollutants and many studies have documented population health effects from this exposure.

OBJECTIVES: We aimed to assess the evidence of health effects from exposure to wildfire smoke and to identify susceptible populations.

METHODS: We reviewed the scientific literature for studies of wildfire smoke exposure on mortality and on respiratory, cardiovascular, mental, and perinatal health. Within those reviewed papers deemed to have minimal risk of bias, we assessed the coherence and consistency of findings.

DISCUSSION: Consistent evidence documents associations between wildfire smoke exposure and general respiratory health effects, specifically exacerbations of asthma and chronic obstructive pulmonary disease. Growing evidence suggests associations with increased risk of respiratory infections and all-cause mortality. Evidence for cardiovascular effects is mixed, but a few recent studies have reported associations for specific cardiovascular endpoints. Insufficient research exists to identify specific population subgroups that are more susceptible to wildfire smoke exposure.

CONCLUSIONS: Consistent evidence from a large number of studies indicates that wildfire smoke exposure is associated with respiratory morbidity with growing evidence supporting an association with all-cause mortality. More research is needed to clarify which causes of mortality may be associated with wildfire smoke, whether cardiovascular outcomes are associated with wildfire smoke, and if certain populations are more susceptible.

Journal Article

Abstract  TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.

Journal Article

Abstract  Central to public health risk communication is understanding the perspectives and shared values among individuals who need the information. Using the responses from a Smoke Sense citizen science project, we examined perspectives on the issue of wildfire smoke as a health risk in relation to an individual's preparedness to adopt recommended health behaviors. The Smoke Sense smartphone application provides wildfire-related health risk resources and invites participants to record their perspectives on the issue of wildfire smoke. Within the app, participants can explore current and forecasted daily air quality, maps of fire locations, satellite images of smoke plumes, and learn about health consequences of wildfire smoke. We used cluster analysis to identify perspective trait-clusters based on health status, experience with fire smoke, risk perception, self-efficacy, access to exposure-reducing resources, health information needs, and openness to health risk messaging. Differences between traits were examined based on demographics, health status, activity level and engagement with the app. We mapped these traits to the Precaution Adoption Process Model (PAPM) to indicate where each trait lies in adopting recommended health behaviors. Finally, we suggest messaging strategies that may be suitable for each trait. We determined five distinct perspective traits which included individuals who were Protectors and have decided to engage on the issue by adopting new behaviors to protect their health; Cautious, Proactive, and Susceptible individuals who were at a Deciding stage but differed based on risk perceptions and information needs; and the Unengaged who did not perceive smoke as a health issue and were unlikely to change behavior in response to messaging. Across all five traits, the level of engagement and information needs differed substantially, but were not defined by demographics. Individuals in the Susceptible trait had the highest level of engagement and the highest information needs. Messaging that emphasizes self-efficacy and benefits of reducing exposure may be effective in motivating individuals from the deciding stage to taking health protective action. Shared perspectives define an individual's propensity for acting on recommended health behaviors, therefore, health risk message content should be tailored based on these perspectives.

Journal Article

Abstract  BACKGROUND: Wildfire events are increasing in prevalence in the western United States. Research has found mixed results on the degree to which exposure to wildfire smoke is associated with an increased risk of mortality.

METHODS: We tested for an association between exposure to wildfire smoke and non-traumatic mortality in Washington State, USA. We characterized wildfire smoke days as binary for grid cells based on daily average PM2.5 concentrations, from June 1 through September 30, 2006-2017. Wildfire smoke days were defined as all days with assigned monitor concentration above a PM2.5 value of 20.4 μg/m3, with an additional set of criteria applied to days between 9 and 20.4 μg/m3. We employed a case-crossover study design using conditional logistic regression and time-stratified referent sampling, controlling for humidex.

RESULTS: The odds of all-ages non-traumatic mortality with same-day exposure was 1.0% (95% CI: - 1.0 - 4.0%) greater on wildfire smoke days compared to non-wildfire smoke days, and the previous day's exposure was associated with a 2.0% (95% CI: 0.0-5.0%) increase. When stratified by cause of mortality, odds of same-day respiratory mortality increased by 9.0% (95% CI: 0.0-18.0%), while the odds of same-day COPD mortality increased by 14.0% (95% CI: 2.0-26.0%). In subgroup analyses, we observed a 35.0% (95% CI: 9.0-67.0%) increase in the odds of same-day respiratory mortality for adults ages 45-64.

CONCLUSIONS: This study suggests increased odds of mortality in the first few days following wildfire smoke exposure. It is the first to examine this relationship in Washington State and will help inform local and state risk communication efforts and decision-making during future wildfire smoke events.

Journal Article

Abstract  BACKGROUND: The frequency and intensity of wildfires is anticipated to increase as climate change creates longer, warmer, and drier seasons. Particulate matter (PM) from wildfire smoke has been linked to adverse respiratory and possibly cardiovascular outcomes. Children, older adults, and persons with underlying respiratory and cardiovascular conditions are thought to be particularly vulnerable. This study examines the healthcare utilization of Medi-Cal recipients during the fall 2007 San Diego wildfires, which exposed millions of persons to wildfire smoke.

METHODS AND FINDINGS: Respiratory and cardiovascular International Classification of Diseases (ICD)-9 codes were identified from Medi-Cal fee-for-service claims for emergency department presentations, inpatient hospitalizations, and outpatient visits. For a respiratory index and a cardiovascular index of key diagnoses and individual diagnoses, we calculated rate ratios (RRs) for the study population and different age groups for 3 consecutive 5-day exposure periods (P1 [October 22-26], P2 [October 27-31], and P3 [November 1-5]) versus pre-fire comparison periods matched on day of week (5-day periods starting 3, 4, 5, 6, 8, and 9 weeks before each exposed period). We used a bidirectional symmetric case-crossover design to examine emergency department presentations with any respiratory diagnosis and asthma specifically, with exposure based on modeled wildfire-derived fine inhalable particles that are 2.5 micrometers and smaller (PM2.5). We used conditional logistic regression to estimate odds ratios (ORs), adjusting for temperature and relative humidity, to assess same-day and moving averages. We also evaluated the United States Environmental Protection Agency (EPA)'s Air Quality Index (AQI) with this conditional logistic regression method. We identified 21,353 inpatient hospitalizations, 25,922 emergency department presentations, and 297,698 outpatient visits between August 16 and December 15, 2007. During P1, total emergency department presentations were no different than the reference periods (1,071 versus 1,062.2; RR 1.01; 95% confidence interval [CI] 0.95-1.08), those for respiratory diagnoses increased by 34% (288 versus 215.3; RR 1.34; 95% CI 1.18-1.52), and those for asthma increased by 112% (58 versus 27.3; RR 2.12; 95% CI 1.57-2.86). Some visit types continued to be elevated in later time frames, e.g., a 72% increase in outpatient visits for acute bronchitis in P2. Among children aged 0-4, emergency department presentations for respiratory diagnoses increased by 70% in P1, and very young children (0-1) experienced a 243% increase for asthma diagnoses. Associated with a 10 μg/m3 increase in PM2.5 (72-hour moving average), we found 1.08 (95% CI 1.04-1.13) times greater odds of an emergency department presentation for asthma. The AQI level "unhealthy for sensitive groups" was associated with significantly elevated odds of an emergency department presentation for respiratory conditions the day following exposure, compared to the AQI level "good" (OR 1.73; 95% CI 1.18-2.53). Study limitations include the use of patient home address to estimate exposures and demographic differences between Medi-Cal beneficiaries and the general population.

CONCLUSIONS: Respiratory diagnoses, especially asthma, were elevated during the wildfires in the vulnerable population of Medi-Cal beneficiaries. Wildfire-related healthcare utilization appeared to persist beyond the initial high-exposure period. Increased adverse health events were apparent even at mildly degraded AQI levels. Significant increases in health events, especially for respiratory conditions and among young children, are expected based on projected climate scenarios of wildfire frequency in California and globally.

Journal Article

Abstract  Prescribed grassland fires in the Flint Hills region of central Kansas and northern Oklahoma are a common tool for land management. Local to regional scale impacts on air quality from grassland fires in this region are not well understood, which is important as these types of prescribed fires may increase in the future to preserve broader areas of native grasses in the central U.S. Routine air quality and deposition measurements from sites in and near the Flint Hills were examined for coincident increases during periods of increased prescribed grassland fires. Prescribed fire activity in this region was quantified using satellite detections and multiple publicly available data products of area burned information. March and April comprise over half (41 to 93%) of all annual fire detections in the Flint Hills region seen from satellites between 2007 and 2018 excluding drought years. Annual total fire detections in this region range between 1 and 12 thousand and account for approximately 3% of all fire detections in the contiguous U.S. Annual acres burned ranged from 0.2 to 2 million acres based on U.S. EPA's National Emission Inventory, which accounts for 4 to 38% of grasslands in the area. A comparison of weekly standardized anomalies suggests a relationship between periods of increased grassland fire activity and elevated levels of PM2.5 organic carbon, elemental carbon, and potassium. Daily 1-hr maximum ozone (O3), ammonia (NH3), sulfur dioxide (SO2), and oxidized nitrogen gases measured at Konza Prairie also had increased levels when prescribed grassland fire activity was highest. This detailed characterization of prescribed fire activity in the Flint Hills and associated air quality impacts will benefit future efforts to understand changes in atmospheric composition due to changing land management practices.

Journal Article

Abstract  Climate forecasts predict an increase in frequency and intensity of wildfires. Associations between health outcomes and population exposure to smoke from Washington 2012 wildfires were compared using surface monitors, chemical-weather models, and a novel method blending three exposure information sources. The association between smoke particulate matter ≤2.5 μm in diameter (PM2.5) and cardiopulmonary hospital admissions occurring in Washington from 1 July to 31 October 2012 was evaluated using a time-stratified case-crossover design. Hospital admissions aggregated by ZIP code were linked with population-weighted daily average concentrations of smoke PM2.5 estimated using three distinct methods: a simulation with the Weather Research and Forecasting with Chemistry (WRF-Chem) model, a kriged interpolation of PM2.5 measurements from surface monitors, and a geographically weighted ridge regression (GWR) that blended inputs from WRF-Chem, satellite observations of aerosol optical depth, and kriged PM2.5. A 10 μg/m3 increase in GWR smoke PM2.5 was associated with an 8% increased risk in asthma-related hospital admissions (odds ratio (OR): 1.076, 95% confidence interval (CI): 1.019-1.136); other smoke estimation methods yielded similar results. However, point estimates for chronic obstructive pulmonary disease (COPD) differed by smoke PM2.5 exposure method: a 10 μg/m3 increase using GWR was significantly associated with increased risk of COPD (OR: 1.084, 95%CI: 1.026-1.145) and not significant using WRF-Chem (OR: 0.986, 95%CI: 0.931-1.045). The magnitude (OR) and uncertainty (95%CI) of associations between smoke PM2.5 and hospital admissions were dependent on estimation method used and outcome evaluated. Choice of smoke exposure estimation method used can impact the overall conclusion of the study.

Journal Article

Abstract  Wildland fire emissions are routinely estimated in the US Environmental Protection Agency's National Emissions Inventory, specifically for fine particulate matter (PM2.5) and precursors to ozone (O-3); however, there is a large amount of uncertainty in this sector. We employ a brute-force zero-out sensitivity method to estimate the impact of wildland fire emissions on air quality across the contiguous US using the Community Multiscale Air Quality (CMAQ) modelling system. These simulations are designed to assess the importance of wildland fire emissions on CMAQ model performance and are not intended for regulatory assessments. CMAQver. 5.0.1 estimated that fires contributed 11% to the mean PM2.5 and less than 1% to the mean O-3 concentrations during 2008-2012. Adding fires to CMAQ increases the number of 'grid-cell days' with PM2.5 above 35 mu g m(-3) by a factor of 4 and the number of grid-cell days with maximum daily 8-h average O-3 above 70 ppb by 14%. Although CMAQ simulations of specific fires have improved with the latest model version (e.g. for the 2008 California wildfire episode, the correlation r = 0.82 with CMAQ ver. 5.0.1 v. r = 0.68 for CMAQ ver. 4.7.1), the model still exhibits a low bias at higher observed concentrations and a high bias at lower observed concentrations. Given the large impact of wildland fire emissions on simulated concentrations of elevated PM2.5 and O-3, improvements are recommended on how these emissions are characterised and distributed vertically in the model.

Journal Article

Abstract  BACKGROUND: Wildfire smoke is known to exacerbate respiratory conditions; however, evidence for cardiovascular and cerebrovascular events has been inconsistent, despite biological plausibility.

METHODS AND RESULTS: A population-based epidemiologic analysis was conducted for daily cardiovascular and cerebrovascular emergency department (ED) visits and wildfire smoke exposure in 2015 among adults in 8 California air basins. A quasi-Poisson regression model was used for zip code-level counts of ED visits, adjusting for heat index, day of week, seasonality, and population. Satellite-imaged smoke plumes were classified as light, medium, or dense based on model-estimated concentrations of fine particulate matter. Relative risk was determined for smoky days for lag days 0 to 4. Rates of ED visits by age- and sex-stratified groups were also examined. Rates of all-cause cardiovascular ED visits were elevated across all lags, with the greatest increase on dense smoke days and among those aged ≥65 years at lag 0 (relative risk 1.15, 95% confidence interval [1.09, 1.22]). All-cause cerebrovascular visits were associated with smoke, especially among those 65 years and older, (1.22 [1.00, 1.49], dense smoke, lag 1). Respiratory conditions were also increased, as anticipated (1.18 [1.08, 1.28], adults >65 years, dense smoke, lag 1). No association was found for the control condition, acute appendicitis. Elevated risks for individual diagnoses included myocardial infarction, ischemic heart disease, heart failure, dysrhythmia, pulmonary embolism, ischemic stroke, and transient ischemic attack.

CONCLUSIONS: Analysis of an extensive wildfire season found smoke exposure to be associated with cardiovascular and cerebrovascular ED visits for all adults, particularly for those over aged 65 years.

DOI
Journal Article

Abstract  The objective of this paper is to examine whether the severity and great extent of the 1988 Yellow-stone fires impacted the water quality of two of Yellowstone's major lakes. Analysis of water quality records for Yellowstone and Lewis Lakes collected over a fifteen year period (1976-1991) have shown only a minimal shift in lake water quality following the fires. Though 25 percent of their watersheds were heavily burned, these lakes appear to be large enough to dilute increased inputs and have experienced few lasting effects from the 1988 fires. The relative importance of landwater interactions in affecting the water quality of Yellowstone's large lakes must be viewed in the context of a multitude of other factors, including changing atmospheric deposition and hydrothermal inputs.

  • <<
  • 1 of 27
  • >>
Filter Results