Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids

Mortensen, AS; Letcher, RJ; Cangialosi, MV; Chu, S; Arukwe, A

HERO ID

1051306

Reference Type

Journal Article

Year

2011

Language

English

PMID

21354591

HERO ID 1051306
In Press No
Year 2011
Title Tissue bioaccumulation patterns, xenobiotic biotransformation and steroid hormone levels in Atlantic salmon (Salmo salar) fed a diet containing perfluoroactane sulfonic or perfluorooctane carboxylic acids
Authors Mortensen, AS; Letcher, RJ; Cangialosi, MV; Chu, S; Arukwe, A
Journal Chemosphere
Volume 83
Issue 8
Page Numbers 1035-1044
Abstract In the present study, groups of juvenile Atlantic salmon (Salmo salar) were fed gelatine capsules containing fish-food spiked with PFOA or PFOS (0.2 mg kg(-1) fish) and solvent (methanol). The capsules were given at days 0, 3 and 6. Blood, liver and whole kidney samples were collected prior to exposure (no solvent control), and at days 2, 5, 8 and 14 after exposure (Note: that day 14 after exposure is equal to 7d recovery period). We report on the differences in the tissue bioaccumulation patterns of PFOS and PFOA, in addition to tissue and compound differences in modulation pattern of biotransformation enzyme genes. We observed that the level of PFOS and PFOA increased in the blood, liver and kidney during the exposure period. Different PFOS and PFOA bioaccumulation patterns were observed in the kidney and liver during exposure- and after the recovery periods. Particularly, after the recovery period, PFOA levels in the kidney and liver tissues were almost at the control level. On the contrary, PFOS maintained an increase with tissue-specific differences, showing a higher bioaccumulation potential (also in the blood), compared with PFOA. While PFOS and PFOA produced an apparent time-dependent increase in kidney CYP3A, CYP1A1 and GST expression, similar effects were only temporary in the liver, significantly increasing at sampling day 2. PFOA and PFOS exposure resulted in significant decreases in plasma estrone, testosterone and cortisol levels at sampling day 2, and their effects differed with 17α-methyltestostrerone showing significant decrease by PFOA (also for cholesterol) and increase by PFOS. PFOA significantly increased estrone and testosterone, and no effects were observed for cortisol, 17α-methyltestosterone and cholesterol at sampling day 5. Overall, the changes in plasma steroid hormone levels parallel changes in CYP3A mRNA levels. Given that there are no known studies that have demonstrated such tissue differences in bioaccumulation patterns with associated differences in toxicological responses in any fish species or lower vertebrate, the present findings provide some potential insights and basis for a better understanding of the possible mechanisms of PFCs toxicity that need to be studied in more detail.
Doi 10.1016/j.chemosphere.2011.01.067
Pmid 21354591
Wosid WOS:000291120400001
Is Certified Translation No
Dupe Override No
Comments Source: Web of Science 000291120400001
Is Public Yes
Language Text English
Keyword Atlantic salmon; PFCs; Bioaccumulation; Biotransformation; Steroid hormones; Enzyme gene expression
Is Qa No