Sequential protonation and methylation of a hydride-osmium complex containing a cyclopentadienyl ligand with a pendant amine group
Esteruelas, MA; López, AM; Oñate, E; Royo, E
| HERO ID | 1052792 |
|---|---|
| In Press | No |
| Year | 2005 |
| Title | Sequential protonation and methylation of a hydride-osmium complex containing a cyclopentadienyl ligand with a pendant amine group |
| Authors | Esteruelas, MA; López, AM; Oñate, E; Royo, E |
| Journal | Inorganic Chemistry |
| Volume | 44 |
| Issue | 11 |
| Page Numbers | 4094-4103 |
| Abstract | Complex OsH{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2 (1) reacts with 1 equiv of trifluoromethanesulfonic acid (HOTf) and trifluoromethanesulfonic acid-d1 (DOTf) to produce the dihydride and hydride-deuteride complexes, [OsHE{eta5-C5H4(CH2)2NMe2}(P(i)Pr3)2]OTf (E = H (2), D (2-d1), respectively. Treatment of 2 and 2-d1 with a second equivalent of HOTf gives [OsHE{eta5-C5H4(CH2)2NHMe2}(P(i)Pr3)2][OTf]2 (E = H (3), D (3-d1) as a result of the protonation of the nitrogen atom. While the hydride and deuteride ligands of 2, 2-d1, 3, and 3-d1 do not undergo any H/D exchange process with the solvent, in acetone-d6, the NH proton of 3 and 3-d1 changes places with a deuterium atom of the solvent to yield [OsHE{eta5-C5H4(CH2)2NDMe2}(P(i)Pr3)2][OTf]2 (E = H (3-Nd1), D (3-d2)). Complex 3-Nd1 can also be obtained from the treatment of complex 2 with DOTf in dichloromethane. No exchange process between the hydride and the ND positions in 3-Nd1 or between the deuteride and NH positions in 3-d1 has been observed. Treatment of 3-Nd1 and 3-d1 with sodium methoxide results in a selective reaction of the base with the ammonium group to regenerate 2 and 2-d1, respectively. Complex 1 also reacts with methyl and methyl-d3 trifluoromethanesulfonate (CH3OTf and CD3OTf, respectively) to give [OsH{eta5-C5H4(CH2)2NMe2CE3}(P(i)Pr3)2]OTf (E = H (4), D (4-d3)) as a result of the addition of the CE3 (E = H, D) group to the nitrogen atom. Complex 4 has been characterized by an X-ray diffraction analysis. It reacts with a second molecule of CH3OTf or CD3OTf to produce [OsH{eta5-C5H4(CH2)2NMe3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5). Similarly, complex 4-d3 reacts with a second molecule of CH3OTf or CD3OTf to yield [OsH{eta5-C5H4(CH2)2NMe2CD3}{CH2CH(CH3)P(i)P2}(P(i)Pr3)[OTf]2 (5-d3). In acetonitrile, complex 5 evolves to an equilibrium mixture of the acetonitrile adducts [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)(P(i)Pr3)2][OTf]2 (7) and [Os{eta5-C5H4(CH2)2NMe3}(NCCH3)2(P(i)Pr3)][OTf]2 (8). In methanol or methanol-d4, complex 4 is not stable and loses trimethylamine to give the vinylcyclopentadienyl derivatives [OsHE(eta5-C5H4CH=CH2)(P(i)Pr3)2]OTf (E = H (9), D (9-d1)) as a result of the protonation or deuteration of the metallic center and a subsequent Hofmann elimination. Protonation of 4 with HOTf gives the dihydride-trimethylammonium derivative [OsH2{eta5-C5H4(CH2)2NMe3}(P(i)Pr3)2][OTf]2 (10). Treatment of 9 with sodium methoxide produces OsH(eta5-C5H4CH=CH2)(P(i)Pr3)2 (11). |
| Doi | 10.1021/ic0502933 |
| Pmid | 15907139 |
| Is Certified Translation | No |
| Dupe Override | No |
| Is Public | Yes |
| Language Text | English |
| Is Qa | No |