Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons

Ng, NL; Kroll, JH; Keywood, MD; Bahreini, R; Varutbangkul, V; Flagan, RC; Seinfeld, JH; Lee, A; Goldstein, AH

HERO ID

199281

Reference Type

Journal Article

Year

2006

Language

English

PMID

16646465

HERO ID 199281
In Press No
Year 2006
Title Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbons
Authors Ng, NL; Kroll, JH; Keywood, MD; Bahreini, R; Varutbangkul, V; Flagan, RC; Seinfeld, JH; Lee, A; Goldstein, AH
Journal Environmental Science & Technology
Volume 40
Issue 7
Page Numbers 2283-2297
Abstract Biogenic hydrocarbons emitted by vegetation are important contributors to secondary organic aerosol (SOA), but the aerosol formation mechanisms are incompletely understood. In this study, the formation of aerosols and gas-phase products from the ozonolysis and photooxidation of a series of biogenic hydrocarbons (isoprene, 8 monoterpenes, 4 sesquiterpenes, and 3 oxygenated terpenes) are examined. By comparing aerosol growth (measured by Differential Mobility Analyzers, DMAs) and gas-phase concentrations (monitored by a Proton Transfer Reaction Mass Spectrometer, PTR-MS), we study the general mechanisms of SOA formation. Aerosol growth data are presented in terms of a "growth curve", a plot of aerosol mass formed versus the amount of hydrocarbon reacted. From the shapes of the growth curves, it is found that all the hydrocarbons studied can be classified into two groups based entirely on the number of double bonds of the hydrocarbon, regardless of the reaction systems (ozonolysis or photooxidation) and the types of hydrocarbons studied: compounds with only one double bond and compounds with more than one double bond. For compounds with only one double bond, the first oxidation step is rate-limiting, and aerosols are formed mainly from low volatility first-generation oxidation products; whereas for compounds with more than one double bond, the second oxidation step may also be rate-limiting and second-generation products contribute substantially to SOA growth. This behavior is characterized by a vertical section in the growth curve, in which continued aerosol growth is observed even after all the parent hydrocarbon is consumed.
Doi 10.1021/es052269u
Pmid 16646465
Wosid WOS:000236691600045N1
Url http://pubs.acs.org/doi/abs/10.1021/es052269u
Is Certified Translation No
Dupe Override No
Comments N1-Contribution of first- versus second-generation products to secondary organic aerosols formed in the oxidation of biogenic hydrocarbonsN1-WOS:000236691600045N1-Times Cited: 50
Is Public Yes
Language Text English
Is Qa No
Relationship(s)