Nitrogen metabolism and route of excretion in beef feedlot cattle fed barley-based finishing diets varying in protein concentration and rumen degradability

Koenig, KM; Beauchemin, KA

HERO ID

2032416

Reference Type

Journal Article

Year

2013

Language

English

PMID

23478813

HERO ID 2032416
In Press No
Year 2013
Title Nitrogen metabolism and route of excretion in beef feedlot cattle fed barley-based finishing diets varying in protein concentration and rumen degradability
Authors Koenig, KM; Beauchemin, KA
Journal Journal of Animal Science
Volume 91
Issue 5
Page Numbers 2310-2320
Abstract The objectives were to characterize the effects of supplemental CP concentration and ruminal degradability in barley-based finishing diets on microbial protein synthesis, ruminal fermentation and nutrient digestion, and route and chemical form of N excretion in beef cattle. Four Angus heifers (564 ± 18 kg BW) with ruminal and duodenal cannulas were used in an experiment designed as a 4 × 4 Latin square with four 28-d periods (9 d for diet adaptation and 19 d for measurements). The basal diet consisted of 9% barley silage and 91% barley-based concentrate (DM basis). Dietary treatments included the basal diet with no added protein (13% CP) or diets containing 14.5% CP by supplementation with urea (UREA), urea and canola meal (UREA+CM), or urea, corn gluten meal, and xylose-treated soybean meal (UREA+CGM+xSBM). Nutrient digestion was determined using Yb as a digesta flow marker and purine N as a microbial marker with the collection of ruminal, duodenal, and fecal samples over 5 d. The next week, total collections of feces and urine were performed for 5 d to quantify route and chemical form of N excretion. Feed offered was restricted (95% of ad libitum) and there was no effect of the dietary treatments on DMI (P = 0.55); therefore, N intake was less (P < 0.05) in heifers fed the 13% CP diets than the 14.5% CP diets. Supplemental RDP and RUP had no effect on ruminal NH3-N (P = 0.17), peptide N (P = 0.46), and VFA (P = 0.62) concentrations, flow of microbial (P = 0.69) and feed (P = 0.22) N, and ruminal and total tract nutrient digestibility (P ≥ 0.18). Nutrient digestion in the rumen and total tract averaged 75.4 ± 3.8% and 84.6 ± 0.9% for OM, 80.8 ± 3.6% and 95.8 ± 0.8% for starch, and 41.2 ± 7.9% and 60.4 ± 3.3% of intake for NDF, respectively. Daily output of N in feces (P = 0.91) and urine (P = 0.14) were not affected by the dietary treatments. Fecal N output averaged 19.9 ± 1.9% (P = 0.30) and urine N output averaged 44.1 ± 2.8% (P = 0.63) of N intake. Urea N output, however, was greater (P < 0.05) in heifers fed the 14.5% CP than the 13% CP diets and was the major form of N in urine (68.3% in heifers fed the 13% CP diet and 78.7 ± 2.9% in heifers fed the 14.5% CP diets; P < 0.10). Beef cattle fed barley-based finishing diets containing 13% CP do not require additional RDP or RUP to meet microbial or host N requirements. Barley-based finishing diets with no supplemental CP minimized urea N excretion and the potential loss of N from the system.
Doi 10.2527/jas2012-5653
Pmid 23478813
Wosid WOS:000319697600039
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English
Keyword barley; excretion; feedlot cattle; nitrogen metabolism; protein