Phosphorus-Containing Fluorinated Organics: Polyfluoroalkyl Phosphoric Acid Diesters (diPAPs), Perfluorophosphonates (PFPAs), and Perfluorophosphinates (PFPIAs) in Residential Indoor Dust

De Silva, AO; Allard, CN; Spencer, C; Webster, GM; Shoeib, M

HERO ID

2558521

Reference Type

Journal Article

Year

2012

Language

English

PMID

23102111

HERO ID 2558521
In Press No
Year 2012
Title Phosphorus-Containing Fluorinated Organics: Polyfluoroalkyl Phosphoric Acid Diesters (diPAPs), Perfluorophosphonates (PFPAs), and Perfluorophosphinates (PFPIAs) in Residential Indoor Dust
Authors De Silva, AO; Allard, CN; Spencer, C; Webster, GM; Shoeib, M
Journal Environmental Science & Technology
Volume 46
Issue 22
Page Numbers 12575-12582
Abstract Indoor dust is thought to be a source of human exposure to perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs), but exposures to emerging organofluorine compounds, including precursors to PFCAs and PFSAs via indoor dust, remain unknown. We report an analytical method for measuring several groups of emerging phosphorus-containing fluorinated compounds, including polyfluoroalkyl phosphoric acid diesters (diPAP), perfluorophosphonates (PFPA), and perfluorophosphinates (PFPIA), as well as perfluoroethylcyclohexane sulfonate (PFECHS) in indoor dust. This method was used to analyze diPAP, PFPA, and PFPIA levels in 102 residential dust samples collected in 2007-2008 from Vancouver, Canada. The results indicated a predominant and ubiquitous presence of diPAPs (frequency of detection 100%, mean and median ΣdiPAPs 7637 and 2215 ng/g). Previously measured median concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and fluorotelomer alcohols (FTOHs) in the same samples were 14-74 times lower than ΣdiPAP levels, i.e. 71 ng/g PFOS, 30 ng/g PFOA, and 152 ng/g ΣFTOHs. PFPAs and PFPIAs were detected in 62% and 85% of samples, respectively, at concentrations nearly 3 orders of magnitude lower than diPAPs (median 2.3 ng/g ΣPFPAs and 2.3 ng/g ΣPFPIAs). PFECHS was detected in only 8% of dust samples. To the best of our knowledge, this is the first report of these compounds in indoor dust. In this study, diPAP concentrations represented 98% ± 7% of the total measured analytes in the dust samples. Detection of diPAPs at such high concentrations in indoor dust may represent an important and as-yet unrecognized indirect source of PFCA exposure in humans, given the identified biotransformation pathways. Identifying the sources of diPAPs to the indoor environment is a priority for future research to improve air quality in households.
Doi 10.1021/es303172p
Pmid 23102111
Wosid WOS:000311873500041
Is Certified Translation No
Dupe Override No
Is Public Yes
Language Text English
Keyword Environmental Studies; Human exposure; Chemical compounds; Indoor air quality; Analytical chemistry; Phosphorus; Polychlorinated biphenyls--PCB; Vancouver British Columbia Canada
Is Peer Review Yes